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1. Preparation of receptor 1.

Receptor 1 was prepared by a method previously reported1, with a modified purification process. A 

solution of tris(2-aminoethyl)amine (200 mg, 1.37 mmol) and n-pentylisothiocyanate (613 mg, 4.51 

mmol) in dichloromethane (DCM) (10 mL) was stirred for 72 h. The solvent was evaporated, resulting 

in a light yellow oil. The residue was purified by column chromatography (SiO2, DCM-AcOEt 1:1), 

precipitated from DCM-hexane, and dried under vacuum to afford the product as a white solid. Yield: 

607 mg (83%). The 1H NMR data coincided with those previously reported. 1H NMR (400 MHz, DMSO-

d6): δ = 7.48 (s, 3H), 7.18 (s, 3H), 3.45 (s, 6H), 2.62 (t, J = 6.6 Hz, 6H), 1.56 – 1.38 (m, 6H), 1.36 – 1.14 

(m, 12H), 0.87 (t, J = 6.9 Hz, 9H).
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2. Facilitated Cl- transfer limited by concentration of receptor 1.

Figure S1. Left) CVs of Cell 1 in the presence of the electrolytes 20mM NaCl(aq) | 10mM BTPPATFPB(DCB) 
and various concentrations of receptor 1(DCB). CVs were calibrated in accordance with the formal 
transfer potential of TMA+ at the water| DCB interface. Right) Plot of the peak current of Cl-—1 
complex (ip) as a function of the concentration of receptor 1 (c1). Scan rate = 10 mV/s.



3. Diffusion coefficient ( ) calculation.𝐷

The diffusion coefficient of receptor 1 can be estimated from the Randles-Ševčík equation,

                                    Equation S1
𝑖𝑝 = 0.4463(𝑧3𝐹3

𝑅𝑇 )1/2𝐴.𝐶 (𝐷.𝜐)1/2

Where  is the peak current of the facilitated anion transfer,  is the scan rate of the voltammetric 𝑖𝑝 𝜐

measurements,  is area of the aqueous| organic interface,  concentration of the ionophore,  is the 𝐴 𝐶 𝐷

diffusion coefficient of the ionophore in the organic interface,  is the Faraday constant,  is the charge 𝐹 𝑧

of the ion,  is the temperature in Kelvin and  is the universal gas constant.𝑇 𝑅

Figure S2. a) CVs of Cell 1 in the presence of the electrolytes 20mM NaCl(aq) | 10mM BTPPATFPB(DCB) 
and 1mM receptor 1(DCB) showing the facilitated Cl- transfer peak. b) Plot of Randles-Ševčík equation 
of the peak current (ip) as a function of the square root of the scan rate (ν1/2) for the forward and 
reverse peaks. Scan rates were from 10-100 mV/s (increments of 10 mV/s).



4. Stoichiometry and association constant ( ).𝐾𝑎

For the stoichiometry and association constant determination, Equation 1 in the main text was used. 

These calculations require  of the anion at the studied aqueous| organic interface (see section 
∆𝑤

𝑜𝜙 𝑜'

𝐴 ‒

4 below), and  of the anion of the calibrated CV. ∆𝑤
𝑜𝜙1/2

Calibration of the CVs is a mandatory practice for the analysis calculations, since the absolute scale of 

the Galvani potential difference is not accessible by direct measurements. In this context, a calibrator 

ion of known and defined standard transfer potential can be used to scale the CV data. Herein, the 

CVs were calibrated by adding tetramethylammonium cation (0.2mM TMA+, )2 
∆𝑤

𝑜𝜙 𝑜'

𝑇𝑀𝐴 + = 0.226 𝑉

during the voltammetric measurements. Calibrated CVs for the facilitated Cl- and Br- transfer in 

presence of TMA+ are shown in Figure S3.

Figure S3. CVs of Cell 1 for NaCl(aq)
 (Left) and NaBr(aq)

 (Right) at various concentrations in the presence 
of 0.5mM receptor 1(DCB) and the calibrator cation 0.2mM TMA+

(aq). Scan rate = 10 mV/s.

Differential pulse voltammetry (DPV) was also employed to extract accurate half-wave potential data, 

especially in case of overlapping of the transfer wave of TMA+ with other peaks. An example which 

involves the facilitated transfer of CH3COO- is shown in Figure S4.



Figure S4. (Left) CVs of Cell 1 for CH3COOLi(aq) at various concentrations in the presence of 0.5mM 
receptor 1(DCB) and the calibrator cation 0.2mM TMA+

(aq). Scan rate = 10 mV/s. (Right) DPV curve of the 
cell at various concentrations. Scan rate = 50 mV/s.



5. Correlations of the standard Gibbs energy of ion transfer ( ).Δ𝐺�°,𝑤→𝑜
𝑡𝑟

Due to the lack of the data of the standard anion transfer potential ( ) from water to DCB for Br-, 
∆𝑤

𝑜𝜙 𝑜'

𝐴 ‒

CH3COO- and SO4
2-,  data from other solvents were used to estimate the required data in DCB.  

∆𝑤
𝑜𝜙 𝑜'

𝐴 ‒

That is, plots of the standard Gibbs energy of ion transfer ( ) from water to different solvents Δ𝐺�°,𝑤→𝑜
𝑡𝑟

were found to provide linear correlations, allowing to estimate  of unknown data in one Δ𝐺�°,𝑤→𝑜
𝑡𝑟

solvent relative to a known one of another solvent3,4.  data are more widely reported for 1,2-Δ𝐺�°,𝑤→𝑜
𝑡𝑟

dichloroethane (DCE) and nitrobenzene (NB) solvents, unlike DCB. Thus,  and  Δ𝐺�°,𝑤→𝑁𝐵
𝑡𝑟 Δ𝐺�°,𝑤→𝐷𝐶𝐸

𝑡𝑟

data were plotted in relation to  of some reported data (Fig. S5). The average  Δ𝐺�°,𝑤→𝐷𝐶𝐵
𝑡𝑟 Δ𝐺�°,𝑤→𝐷𝐶𝐵

𝑡𝑟

values for transfer from water to DCB for Cl-, Br-, CH3COO- and SO4
2- were estimated to equal 63.05, 

51.01, 53.47 and 139.41 kJ/mol, respectively. Subsequently,  values were calculated from,
∆𝑤

𝑜𝜙 𝑜'

𝐴 ‒

                                                   Equation S2
∆𝑤

𝑜𝜙 𝑜'

𝐴 ‒ =
Δ𝐺�°,𝑤→𝑜

𝑡𝑟

𝑧𝐹

 

Figure S5. Plots of the standard Gibbs energy of ion transfer ( ) of various ions showing the Δ𝐺�°,𝑤→𝑜
𝑡𝑟

linear correlations. Data were collected from several references2,5,14,6–13 and the average value was 
plotted.





6. Facilitated phosphate ion transfer by N,N’-di(n-butyl)thiourea.

Figure S6. CVs of Cell 1 in the presence of only the supporting electrolytes 1M (pH 7) phosphate 
buffer(aq) | 10mM BTPPATFPB(DCB) (black) and after the addition of 1mM dibutylthiourea(DCB) (blue). 
Scan rate = 50 mV/s. It can be seen that after the addition of the receptor, no interfacial reactions 
took place within the potential window, and only the current limits increased. 
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