Supporting information for

Revealing the reinforcing effect of a nanorod network on a polymer matrix

through molecular dynamics simulations

Xiu Li^a, Ben Huang^a, Jun Liu^{b*}, Xiaoxi Hu^c, and Zi-Jian Zheng^{a*}

^aMinistry of Education Key Laboratory for the Green Preparation and Application of Functional

Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China

^bKey Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China

^cCollege of Mechanical Engineering, Guangdong Songshan Polytechnic, Shaoguan, Guangdong, 512126, China

*To whom correspondence should be addressed: Z. J. Zheng, zhengzj@hubu.edu.cn; J. Liu: liujun@mail.buct.edu.cn.

Fig. S1 (a, c) The variation of the mean squared end-to-end distance *R2 end*, radius of gyration *R2 g* and (b, d) the change of the potential energy of the two systems in the following 1.0×10^6 MD steps after enough equilibration with *NVT* ensemble. For a and b, the NP-polymer interaction strength ε_{np} equals 2.0, NP-NP interaction strength ε_{nn} equals 1.0, and r_{cutoff} equals 2.5. For c and d, the NP-polymer interaction strength ε_{np} equals 2.0, NP-NP interaction strength ε_{np} equals 50.0, and r_{cutoff} equals 2.5.

Fig. S2 (a) Maximum atomic stress (MAX) imposed on the polymer atoms for simulated systems with different NR-NR interaction strengths. (b) Density of polymer atoms with HMAS for simulated systems with different NR-NR interaction strengths.