Supporting Information

High-intensity first near-infrared emission through energy migration in multilayered upconversion nanoparticles

Xuegang Zheng ^{a,b}, Ying Chen ^{a,b}, Meijuan Liu ^{a,b}, Shusheng Pan ^{a,b}, Zhiyu Liu ^{a,b}, Dekang Xu ^c, Hao Lin ^{a,b,*}

- ^a School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, P. R. China
- ^b Research Center for Advanced Information Materials, Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, P. R. China
- ^c School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, P. R. China

*Corresponding Author Dr. Hao Lin E-mail: <u>linhao@gzhu.edu.cn</u>

Fig. S1. XRD patterns of NaErF₄:20%Yb@NaYF₄:50%Yb@NaYF₄:49%Yb,1%Tm@NaYF₄ UCNPs, and the vertical red lines are the standard diffraction patterns of β -NaYF₄ (JCPDS 16-0334).

Fig. S2. UC luminescence spectra of NaErF₄:20%Yb@NaYF₄:x%Yb@NaYF₄:49%Yb,1%Tm@NaYF₄ (x = 0, 20, 50, 80, 100) UCNPs under 980 nm excitation.

Fig. S3. Schematic energy-level diagram and the proposed energy transfer mechanisms of the NaErF₄:Yb@NaYF₄:Yb@Na

Fig. S4. The CIE diagram and corresponding emission photographs of NaErF₄:x%Yb@NaYF₄:50%Yb@NaYF₄:49%Yb,1%Tm @NaYF₄ (x = 0, 20, 50, 80) and NaErF₄:20%Yb@NaYF₄:x%Yb@NaYF₄:49%Yb,1%Tm@NaYF₄ (x = 0, 20, 50, 80, 100) UCNPs under (a-b) 1532 nm and (c) 980 nm excitations.

 $\label{eq:Fig.S5.Schematic energy-level diagram and the proposed energy transfer mechanisms of the NaErF_4:Yb@NaYF_4:Yb@NaGdF_4: Yb,Tm@NaYF_4 core/shell/shell/shell UCNPs under 1532 nm excitation.$

Fig. S6. Schematic energy-level diagram and the proposed energy transfer mechanisms of the NaErF₄:Yb@NaYF₄:Yb@ NaGdF₄:Yb,Tm@NaYF₄:Eu core-shell-shell-shell UCNPs under 1532 nm excitation.

Fig. S7. Schematic energy-level diagram and the proposed energy transfer mechanisms of the NaErF₄:Yb@ NaYF₄:Yb@NaGdF₄:Yb,Tm@NaYF₄:Tb core-shell-shell UCNPs under 1532 nm excitation.

Fig. S8. UC luminescence spectra of NaErF₄:20%Yb@NaYF₄:50%Yb@NaYF₄:49%Yb,1%Tm@NaYF₄, NaErF₄:20%Yb@NaYF₄@NaYF₄:49%Yb,1%Tm@NaYF₄UCNPs under (a) 1532 nm and (b) 980 nm excitations.

Fig. S9. Decay curves of (a) $Er^{3+:4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (541 nm), (b) $Er^{3+:4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (654 nm) and (c) $Tm^{3+:3}H_4 \rightarrow {}^{3}H_6$ (807 nm) emissions in NaErF₄:x%Yb@NaYF₄:50%Yb@NaYF₄:49%Yb,1%Tm@NaYF₄ (x = 0, 20, 50, 80) UCNPs under 1532 nm excitation, respectively.