Supplementary information

Mechanical and transport properties of $InGeX_3$ (X=S, Se and Te) monolayer using density functional theory and machine learning

Yong-Bo Shi,¹ Yuan-Yuan Chen,¹ Hao Wang,¹ Shuo Cao,² Heng-Xu Zhu,³ Meng-Fan Chu,⁴ Zhu-Feng Shao,¹ Hai-Kuan Dong,^{1, *} and Ping Qian^{3, †}

¹College of Physical Science and Technology, Bohai University, Jinzhou 121013, PR China

²Beijing Advanced Innovation Center for Materials Genome Engineering, Corrosion and Protection Center,

University of Science and Technology Beijing, Beijing 100083, PR China

³Department of Physics, University of Science and Technology Beijing, Beijing 100083, PR China ⁴College of Miami, Henan University, Kaifeng 475004, PR China

^{*} donghaikuan@163.com

[†] qianping@ustb.edu.cn

Figure S1. Stress as a function of uniaxial strain for $InGeX_3$ (X=S, Se and Te) monolayer calculated by NEP-based MD simulations at 300 K.

Figure S2. The electronic band structure of $InGeX_3$ (X=S, Se and Te) monolayer calculated from DFT (symbol in black) and Wannier interpolation approach (symbol in red)