Supplementary information

Scalable Production of Foam-like Nickel-Molybdenum Coatings via Plasma Spraying as Bifunctional Electrocatalysts for Water Splitting

Xiuyu Wu,¹ Alexis Piñeiro García,¹ Mouna Rafei,¹ Nicolas Boulanger,¹ Esdras Josué Canto-Aguilar, and Eduardo Gracia-Espino.¹

¹ Department of Physics, Umeå University, SE-901 87 Umeå, Sweden.

*Corresponding author: Eduardo Gracia-Espino (eduardo.gracia@umu.se)

Current	Primary gas	Secondary gas	Power	Spray	Sample label	
(A)	(NL min ⁻¹)	(NL min ⁻¹)	(kW)	distance		
				(mm)		
500	35	0.5	20	250	NiMo 20kW@250mm	HER
600	35	0.5	24	250	NiMo 24kW@250mm	HER
750	50	2	38	250	NiMo 38kW@250mm	HER
500	35	0.5	20	200	NiMo 20kW@200mm	HER
500	35	0.5	20	250	NiMo 20kW@250mm	HER
500	35	0.5	20	300	NiMo 20kW@300mm	HER
400	20	0.5	16	100	NiMo 16kW@100mm	OER
400	20	0.5	16	150	NiMo 16kW@150mm	OER
400	35	0.5	17	100	NiMo 17kW@100mm	OER

Table S1. Spraying parameters and sample labels for samples tested for HER and OER.

Table S2. Double-layer capacitance calculated from CV obtained for three replicates of the sample NiMo 20kW@100mm in a solution 0.1 M NBu₄PF₆ in CH₃CN, before and after the Al leaching. The similar values of the capacitance calculated either with the cathodic or the anodic currents indicate a high coulombic efficiency and reproducibility of the measurements.

	Before Al leaching		After Al leaching	
n	C _{cathodic} (F cm ⁻²)	C _{anodic} (F cm ⁻²)	C _{cathodic} (F cm ⁻²)	C _{anodic} (F cm ⁻²)
1	0.0032	0.0031	0.0138	0.0146
2	0.003	0.0027	0.0132	0.0142
3	0.0035	0.0031	0.0155	0.016
Average (\bar{x})	0.0032	0.0030	0.0142	0.0149
Std. Deviation (σ)	0.0003	0.0002	0.0012	0.0009
Coefficient of	9.4 %	6.7%	8.4%	6.0%
variation (Cv)				

Table S3. Catalysts loading per square centimetre for samples sprayed at 20 kW but different distances (weighted area 1×4 cm). Electrochemically active surface area (ECSA), and overpotential needed to achieve a current density of -50 mA cm⁻².

Sample Label	Weight	ECSA	η ₅₀
	(mg cm ⁻²)	(cm ² per cm ² of	(mV)
		geometric area)	
NiMo 20kW@100mm	200	1768.84	42
NiMo 20kW@200mm	126	1065.72	46
NiMo 20kW@250mm	90	573.58	62
NiMo 20kW@300mm	78	455.38	88

Table S4. Comparison of mass activity for different noble-metal free electrocatalysts for HER in 1 M KOH.

Catalyst	Overpotential (mV)	Mass activity (A g ⁻¹)	Reference.
NiMo 20kW@100mm	100	0.65	This work
Ni nanoparticles	50	0.28	[1]
3D-printed NiMo	100	0.32	[2]
Ni-Mo	200	0.28	[3]
Co Single-Atom-Catalyst	100	2.9	[4]
Co NPs	100	0.80	[4]
3D NiCu _{ed}	-	0.24	[5]
MoSe ₂ -NiSe ₂ -CoSe ₂ /PNCF	100	0.19	[6]
Mo-NiS/Ni ₃ S ₂ -0.08 S	100	0.15	[7]
MoS ₂ /Ni	100	1.4	[8]

Table S5. Comparison of mass activity for different noble-metal free electrocatalysts for OER in 1 M alkaline electrolyte (KOH or NaOH).

Catalyst	Overpotential	Mass activity (A g ⁻¹)	Reference.
	(mV)		
NiMo 16kW@100mm	300	0.3	This work
SCoNC	310	0.278	[9]
FeCo nanoparticles	310	0.3	[10]
NiFe LDH/Cu(OH)2/Cu	370	0.153	[11]
Cu(OH)2/Cu	370	0.044	[11]
Co3O4/Co0.85Se/Co9Se8	300	0.29	[12]
Co0.5Ni0.5Fe2O4	300	119	[13]
NCoM-Cb-Ar	500	536.5	[14]

Potential (V vs. RHE)	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)
1.436	0.42	0.36	17.59
1.461	0.40	0.31	4.92
1.486	0.40	0.22	1.03
1.511	0.40	0.36	0.20

Table S6. Value of the resistors used in the equivalent circuit model shown in Figure 10e (mainmanuscript) after fitting the Nyquist plots (Figure 10e) at different applied potentials.

Figure S1. X-ray diffractogram of the initial powder showing features corresponding to individual Ni, Al, and Mo. No signs of Ni-Mo alloys were observed.

Figure S2. XRD patterns of as-sprayed NiAlMo coatings at 250 mm distance and two different power values.

Figure S3. (a) X-ray diffractograms of 20kW@100mm with no Al-leaching, leaching for 0.5h, and leaching for 24h. (b) Polarization curves of the electrodes in (a) without iR-correction.

Figure S4. Cyclic voltammograms for NiMo 20kW@100mm coatings in a three electrodeelectrochemical cell. (a) **Before** and (b) **after Al leaching**. The measurements were performed using a working solution consisting of 0.1 M NBu₄PF₆ in CH₃CN (saturated with Ar), Ag/Ag⁺ (0.1 NBu₄PF₆, 0.01 M AgNO₃) as reference electrode (0.54 V vs NHE), a Pt-wire as counter electrode and varying the scan rate from 5 to 100 mV s⁻¹.

Figure S5. Double-layer capacitance for the electrodes **before and after Al leaching** calculated with the cathodic (0.114 V vs NHE) and anodic currents (0.317 V vs NHE) at different scan rates from the voltammograms in **Figure S4**. The similar currents observed in the cathodic and anodic sweeps indicate a high Coulombic efficiency of the charging/discharging processes at the electrode surface/electrolyte interface.

Figure S6. SEM images of NiMo 20kW@100mm sample (a-c) as-sprayed, and (d-f) after Al leaching.

Figure S7. Polarization curve of stainless-steel mesh in the potential range relevant for the HER.

Figure S8. Double layer capacitance measurements of NiMo samples sprayed at 20kW at different distances. The electrochemical surface area (ECSA) was calculated using ECSA = $C_{dl}/40 \ \mu F \ cm^{-2}$, where 40 $\mu F \ cm^{-2}$ is the charge density for a flat surface. The samples had an exposed geometric area of 1 cm². The observed ECSA are 1768.84 cm²(20kW@100mm), 1065.72 cm² (20kW@200mm), 573.58 cm² (20kW@250mm), and 455.38 cm² (20kW@300mm).

Figure S9. Polarization curves of NiMo 20kW@100mm, 20kW@200mm, 20kW@250mm, and 20kW@300mm before iR-correction.

Figure S10. (a) iR-corrected polarization curve of 20kW@100mm measured up to -0.5 V vs RHE. (b) iR-corrected polarization curve of 16kW@100mm measured up to 1.83 V vs RHE after activation (1000 CVs).

Figure S11. Atomic models used to evaluate the hydrogen adsorption free energy of Ni_4Mo . (a-d) (101), (121), (211), and (110) surface. The adsorption energy was calculated at full hydrogen monolayer with the hydrogen atoms sitting at 3-fold fcc sites as expected for Ni-based alloys.

Figure S12. (a-b) Water adsorption on (101) and (111) surfaces of Ni. (c-d) Water dissociation into H and OH on (101) and (111) Ni surface. The dissociation energy (E_{diss}) is evaluated as $E_{diss} = E_{H-OH-surf} - E_{H2O-surf}$, where $E_{H-OH-surf}$ ($E_{H2O-surf}$) is the energy of the H and OH (H₂O) adsorbed onto the Ni surface. E_{diss} for Ni (101), and Ni(111) is -0.89 and -0.40 eV, respectively. $E_{diss} < 0$ indicates favourable configuration.

Figure S13. (a-c) Water adsorption on (101), (110), and (121) surfaces of Ni₄Mo. (d-f) Water dissociation into H and OH on (101), (110), and (121) surfaces of Ni₄Mo. The dissociation energy (E_{diss}) is evaluated as $E_{diss} = E_{H-OH-surf} - E_{H2O-surf}$ where $E_{H-OH-surf}$ ($E_{H2O-surf}$) is the energy of the H and OH (H₂O) adsorbed onto the Ni₄Mo surface. E_{diss} for (101), (110), and (121) is -0.51, -0.96, and -1.16 eV, respectively. $E_{diss} < 0$ indicates favourable configuration.

Figure S14. Polarization curves of NiMo 16kW@100mm, NiMo 16kW@150mm, and NiMo 17kW@150mm after 1000 CVs activation process, the polarization curves were recorded at a scan rate of 5 mV s⁻¹.

Figure S15. X-ray diffractograms of NiMo 16kW@100mm as sprayed and after Al leaching.

Figure S16. SEM images of NiMo 16W@100mm (a-c) as-sprayed, and (d-f) after Al leaching.

Figure S17. Polarization curve of stainless-steel mesh in the potential range relevant for OER.

References

- Zhuang, Z., et al., Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nature Communications, 2016. 7(1): p. 10141.
- 2. Bu, X., et al., *Remarkable gas bubble transport driven by capillary pressure in 3D printingenabled anisotropic structures for efficient hydrogen evolution electrocatalysts.* Applied Catalysis B: Environmental, 2023. **320**: p. 121995.
- 3. Patil, R.B., et al., *Direct Observation of Ni–Mo Bimetallic Catalyst Formation via Thermal Reduction of Nickel Molybdate Nanorods*. ACS Catalysis, 2020. **10**(18): p. 10390-10398.
- Liu, X., et al., Identifying the Activity Origin of a Cobalt Single-Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021. 31(18): p. 2100547.
- Zhou, B., et al., *Thermal oxidation–electroreduction modified 3D NiCu for efficient alkaline hydrogen evolution reaction*. International Journal of Hydrogen Energy, 2021. 46(43): p. 22292-22302.
- 6. Wang, G., et al., *Trimetallic Mo–Ni–Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution.* Nano Energy, 2020. **71**: p. 104637.
- Zhang, K., et al., Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023. 323: p. 122144.

- Wang, A., et al., Flower-like MoS2 with stepped edge structure efficient for electrocatalysis of hydrogen and oxygen evolution. International Journal of Hydrogen Energy, 2019. 44(13): p. 6573-6581.
- 9. Lei, C., et al., *Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media*. ChemCatChem, 2019. **11**(24): p. 5855-5874.
- Park, J.-H., J.C. Ro, and S.-J. Suh, *FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution.* Applied Surface Science, 2022. 589: p. 153041.
- 11. Babar, P., et al., *Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: An effective method of electronic waste management by utilizing waste Cu cable wires.* Journal of Colloid and Interface Science, 2019. **537**: p. 43-49.
- 12. Ghosh, S., et al., *Inception of Co3O4 as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co0.85Se/Co9Se8 Network*. Inorganic Chemistry, 2020. **59**(23): p. 17326-17339.
- Maruthapandian, V., et al., Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1–xFe2O4 in Alkaline Medium. ACS Applied Materials & Interfaces, 2017. 9(15): p. 13132-13141.
- Gond, R., et al., Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie International Edition, 2019. 58(25): p. 8330-8335.