Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Photoswitchable Nonlinear Optical Properties of Azobenzene-Based Supramolecular Complexes: Insights From Density Functional Theory

Aqsa Nisar¹, Sobia Tabassum², Khurshid Ayub³, Tariq Mahmood^{3, 4}, Hamad AlMohamadi⁵, Asim Laeeq Khan⁶, Muhammad Yasin⁶, R. Nawaz⁷, Mazhar Amjad Gilani¹*

¹Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan

²Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan

³Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan

⁴Department of Chemistry, College of Science, University of Bahrain, Bahrain

⁵Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

⁶Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan

⁷Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, 32093 Hawally, Kuwait

*Corresponding Author Mazhar Amjad Gilani Email: mazhargilani@cuilahore.edu.pk

IIE

Fig. S1: Optimized geometries of IIA-IIIF and IIIA-IIIF complexes

Fig. S2: Optimized geometries of *cis* Azo-X (where X=I, Br or H) and their supramolecular complexes

LUMO

Fig. S3: HOMOs and LUMOs of IIA-IIF and IIIA-IIIF complexes

Fig. S4: TDOS and PDOS of Azo-Br, Azo-H, IIA-IIF and IIIA-IIIF complexes

IIA

IIIB

Fig. S5: a) & b) f^+ & f^- Fukui functions of **IIA-IIF** and **IIIA-IIIF** complexes, respectively c) Dual descriptor (Δf) of **IIA-IIF** and **IIIA-IIIF** complexes

Fig. S6: 3D isosurfaces and 2D-RDG graphs of IIA-IIF and IIIA-IIIF complexes

Fig. S7: Topological figures of IIA-IIIF and IIIA-IIIF complexes (orange dots represent

Fig. S8 (a): Molecular electrostatic potential plots for Azo-X (where X=I, Br and H) and alkoxystilbazole molecule

Fig. S8 (b): Molecular electrostatic potential plots for IA-IF, IIA-IIF and IIIA-IIIF complexes

Tables

Table S1: First frequencies v_1 (<i>cm</i> ⁻¹),	Halogen/Hydrogen	bond lengths	(Å) and	interaction
energies (kcal/mol) of cis Azo-X compl	lexes			

Complexes	v ₁	X _{I-N}	Eint
iA	4.76	2.92	-1.7
iB	3.45	2.91	-1.9
iC	1.86	2.90	-2.3
iD	3.61	2.90	-2.3
iiA	3.51	2.85	-7.1
iiD	3.13	2.83	-7.7
iiiA	4.27	2.17	-7.1
iiiD	2.48	2.15	-7.6

Table S2: Energy decomposition analysis of IB, IC, ID and IID complexes (units of all are in *kcal/mol*)

	IB	IC	ID	IID
Pauli Repulsion	13.41	13.77	13.91	10.86
Steric Interaction	-0.86	-1.07	-1.00	-0.39
Orbital Interactions	-6.71	-6.94	-7.02	-5.36
Bonding Energy	-7.57	-8.01	-8.02	-5.74

Table S3: Energies of frontier molecular orbitals E_{HOMO} (*eV*), E_{LUMO} (*eV*), HOMO-LUMO energy gaps G_{H-L} (*eV*), % G_{HL} and Fermi level E_{FL} (*eV*) of all the complexes

Complex	E _{HOMO}	E _{LUMO}	G _{H-L}	% G _{HL}	$\mathbf{E}_{\mathbf{FL}}$
Azobenzene	-8.54	-0.74	7.80		
IA	-7.89	-0.96	6.93	9.90	-4.43
IB	-7.68	-0.99	6.69	17.75	-4.34
IC	-7.71	-1.21	6.51	15.43	-4.46
ID	-7.72	-1.39	6.33	13.02	-4.56

IE	-7.06	-0.18	6.88	10.61	-3.62
IF	-7.62	-0.36	7.26	5.62	-3.99
ΠΑ	-7.59	-0.64	6.95	9.73	-4.12
IIB	-7.62	-1.04	6.57	19.22	-4.33
IIC	-7.66	-1.27	6.39	17.00	-4.46
IID	-7.66	-1.45	6.22	14.56	-4.56
IIE	-7.10	-0.24	6.86	10.91	-3.67
IIF	-7.56	-0.42	7.14	7.25	-3.99
IIIA	-7.59	-0.51	7.09	7.92	-4.05
IIIB	-7.63	-0.93	6.70	17.86	-4.28
IIIC	-7.66	-1.15	6.51	15.40	-4.41
IIID	-7.67	-1.35	6.32	12.96	-4.51
IIIE	-7.05	-0.09	6.96	9.55	-3.57
IIIF	-7.57	-0.28	7.29	5.28	-3.92

Table S4: Ionization potential I (eV), electron affinity A (eV), hardness μ (eV), chemical potential μ (eV), softness S (eV^{-1}), and electrophilicity ω (eV) of all the complexes

Complex	Ι	Α	ŋ	μ	S	Ø
Azobenzene	8.54	0.74	3.9	-4.64	0.13	2.76
IA	7.89	0.96	3.46	-4.43	0.15	2.83
IB	7.68	0.99	3.34	-4.34	0.15	2.82
IC	7.71	1.21	3.25	-4.46	0.15	3.06
ID	7.72	1.39	3.16	-4.56	0.16	3.29
IE	7.06	0.18	3.44	-3.62	0.14	1.90
IF	7.62	0.36	3.63	-3.99	0.14	2.19
IIA	7.59	0.64	3.48	-4.12	0.14	2.44
IIB	7.62	1.04	3.29	-4.33	0.15	2.85
IIC	7.66	1.27	3.20	-4.46	0.15	3.11
IID	7.66	1.45	3.11	-4.56	0.16	3.34
IIE	7.10	0.24	3.43	-3.67	0.15	1.96
IIF	7.56	0.42	3.57	-3.99	0.14	2.23

IIIA	7.59	0.51	3.54	-4.05	0.14	2.31
IIIB	7.63	0.93	3.35	-4.28	0.15	2.73
IIIC	7.66	1.15	3.26	-4.41	0.15	2.99
IIID	7.67	1.35	3.16	-4.51	0.16	3.22
IIIE	7.05	0.09	3.48	-3.57	0.14	1.83
IIIF	7.57	0.28	3.65	-3.92	0.14	2.11

Table S5: Condensed atomic charges(q), Fukui functions (f^-) and dual descriptors (Δf) of IA-IF, IIA-IIF and IIIA-IIIF complexes

Atoms		IA			IIA			IIIA		
		q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf
1	N	-0.058	-0.002	0.003	-0.058	-0.002	0.002	-0.057	-0.002	0.130
2	N	-0.050	0.005	0.007	-0.050	0.005	0.004	-0.050	0.004	0.133
3	С	0.001	0.006	0.004	0.000	0.006	0.002	0.000	0.006	0.007
4	С	0.020	-0.001	0.001	0.019	-0.001	0.000	0.019	-0.002	0.012
5	С	-0.034	0.002	0.001	-0.034	0.002	0.001	-0.035	0.002	0.040
6	С	0.086	0.003	0.002	0.087	0.002	0.002	0.084	0.004	0.032
7	С	0.087	0.002	0.002	0.089	0.003	0.002	0.085	0.001	0.034
8	С	-0.037	0.001	0.001	-0.037	0.001	0.001	-0.038	0.002	0.041
9	С	-0.039	0.003	0.001	-0.039	0.003	0.001	-0.040	0.003	0.029
10	С	0.074	0.001	0.002	0.077	0.000	0.001	0.086	0.000	0.031
11	С	0.074	0.001	0.002	0.078	0.001	0.001	0.084	-0.005	0.033
12	С	-0.042	0.003	0.001	-0.041	0.003	0.001	-0.042	0.003	0.033
13	С	-0.033	0.006	0.002	-0.033	0.006	0.002	-0.034	0.006	0.062
14	С	-0.078	0.003	0.005	-0.034	-0.001	0.002	-0.062	-0.010	0.078
15	Н	0.053	0.001	0.000	0.054	0.001	0.001	0.053	0.000	0.024
16	Н	0.048	0.000	0.000	0.048	0.000	0.000	0.048	0.001	0.021
17	Н	0.050	0.002	0.000	0.050	0.002	0.001	0.050	0.003	0.024
18	Н	0.050	0.002	0.000	0.050	0.003	0.001	0.050	0.003	0.025
19	Н	0.050	0.003	0.000	0.050	0.003	0.001	0.050	0.004	0.031
20	F	-0.092	0.000	0.001	-0.087	0.001	0.001	-0.092	-0.006	0.035

21	F	-0.084	0.004	0.002	-0.083	0.004	0.002	-0.088	0.003	0.024
22	F	-0.092	0.000	0.001	-0.088	-0.002	0.001	-0.097	0.000	0.031
23	F	-0.085	0.004	0.002	-0.084	0.004	0.002	-0.088	0.005	0.022
24	I/Br/H	0.038	-0.018	-0.002	0.001	-0.019	-0.001	0.046	-0.006	0.032
25	С	-0.019	0.064	-0.058	-0.019	0.063	-0.054	-0.019	0.064	-0.066
26	С	-0.027	0.036	0.055	-0.028	0.038	0.055	-0.028	0.038	-0.030
27	С	0.018	-0.002	0.052	0.016	-0.001	0.050	0.016	-0.001	0.008
28	С	-0.051	0.095	-0.038	-0.050	0.095	-0.032	-0.051	0.096	-0.100
29	С	-0.035	0.047	-0.011	-0.036	0.047	-0.010	-0.036	0.047	-0.045
30	С	-0.036	0.041	-0.013	-0.037	0.042	-0.012	-0.037	0.042	-0.040
31	С	-0.070	0.045	-0.023	-0.070	0.044	-0.022	-0.071	0.044	-0.041
32	С	-0.059	0.051	-0.025	-0.060	0.051	-0.024	-0.060	0.051	-0.048
33	С	-0.049	0.031	0.010	-0.051	0.032	0.010	-0.052	0.032	-0.026
34	С	0.082	0.066	-0.019	0.081	0.066	-0.018	0.081	0.067	-0.061
35	С	0.025	0.024	0.028	0.022	0.025	0.025	0.023	0.026	-0.027
36	С	0.025	0.023	0.020	0.023	0.024	0.018	0.022	0.025	-0.034
37	Η	0.044	0.023	0.009	0.044	0.023	0.009	0.044	0.023	-0.023
38	Η	0.042	0.027	0.002	0.042	0.027	0.002	0.042	0.027	-0.025
39	Н	0.046	0.025	-0.009	0.046	0.025	-0.008	0.046	0.025	-0.024
40	Η	0.048	0.028	-0.011	0.047	0.028	-0.011	0.048	0.028	-0.028
41	Η	0.043	0.027	-0.009	0.043	0.027	-0.009	0.043	0.027	-0.025
42	Η	0.052	0.031	-0.010	0.052	0.031	-0.010	0.052	0.031	-0.029
43	Η	0.051	0.014	0.011	0.050	0.015	0.010	0.049	0.015	-0.009
44	Н	0.050	0.019	0.013	0.046	0.019	0.011	0.050	0.020	-0.020
45	Н	0.050	0.018	0.011	0.051	0.019	0.010	0.043	0.018	-0.026
46	Ν	-0.138	0.046	0.025	-0.145	0.050	0.026	-0.140	0.051	-0.070
47	С	-0.047	0.026	0.018	-0.049	0.026	0.018	-0.049	0.027	-0.025
48	0	-0.136	0.070	-0.044	-0.137	0.069	-0.043	-0.137	0.069	-0.066
49	Н	0.050	0.011	0.012	0.049	0.011	0.011	0.049	0.012	-0.009
50	С	0.006	0.018	-0.008	0.005	0.018	-0.008	0.005	0.018	-0.016
51	Н	0.040	0.019	-0.009	0.040	0.019	-0.009	0.040	0.019	-0.018
52	Н	0.052	0.023	-0.007	0.052	0.023	-0.008	0.052	0.023	-0.020

Atoms		IB			IIB			IIIB		
		q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf
1	С	-0.019	0.065	-0.067	-0.052	-0.002	0.120	-0.051	-0.002	0.123
2	С	-0.026	0.036	-0.028	-0.051	0.005	0.113	-0.051	0.005	0.114
3	С	0.019	-0.002	0.009	-0.001	0.006	0.003	-0.001	0.005	0.003
4	С	-0.051	0.096	-0.100	0.030	-0.002	0.015	0.030	-0.002	0.019
5	С	-0.035	0.047	-0.045	-0.032	0.002	0.037	-0.033	0.002	0.038
6	С	-0.036	0.041	-0.040	0.090	0.003	0.030	0.087	0.003	0.030
7	С	-0.070	0.045	-0.042	0.091	0.002	0.031	0.087	0.001	0.031
8	С	-0.059	0.051	-0.049	-0.037	0.001	0.037	-0.037	0.002	0.039
9	С	-0.049	0.031	-0.028	-0.029	0.002	0.025	-0.029	0.002	0.026
10	С	0.082	0.066	-0.062	0.078	0.001	0.022	0.087	-0.001	0.028
11	С	0.025	0.024	-0.027	0.077	0.000	0.021	0.085	-0.004	0.030
12	С	0.025	0.023	-0.026	-0.024	0.002	0.031	-0.024	0.002	0.033
13	Н	0.044	0.023	-0.022	-0.013	0.005	0.049	-0.014	0.005	0.051
14	Н	0.042	0.027	-0.025	-0.032	-0.001	0.046	-0.059	-0.011	0.073
15	Н	0.046	0.025	-0.025	0.057	0.000	0.022	0.056	0.000	0.023
16	Н	0.048	0.028	-0.028	0.050	0.000	0.019	0.050	0.000	0.020
17	Η	0.043	0.027	-0.025	0.052	0.002	0.019	0.052	0.002	0.020
18	Н	0.052	0.031	-0.029	0.057	0.002	0.021	0.056	0.002	0.022
19	Η	0.051	0.014	-0.010	-0.087	-0.002	0.026	-0.091	-0.006	0.032
20	Н	0.050	0.019	-0.020	-0.081	0.003	0.021	-0.085	0.003	0.021
21	Η	0.050	0.018	-0.020	-0.086	0.001	0.025	-0.095	0.000	0.029
22	Ν	-0.138	0.046	-0.058	-0.082	0.005	0.020	-0.086	0.005	0.020
23	С	-0.047	0.026	-0.022	0.215	0.001	0.025	0.047	-0.006	0.029
24	0	-0.136	0.070	-0.067	-0.283	0.004	0.044	0.215	0.001	0.027
25	Η	0.050	0.011	-0.007	-0.174	0.002	0.019	-0.284	0.005	0.046
26	С	0.006	0.018	-0.016	0.192	0.002	0.017	-0.175	0.002	0.020
27	Н	0.040	0.019	-0.018	0.005	-0.020	0.096	0.192	0.002	0.018
28	Н	0.053	0.023	-0.021	-0.019	0.064	-0.066	-0.019	0.064	-0.067

29	Η	0.040	0.019	-0.018	-0.028	0.038	-0.031	-0.028	0.037	-0.029
30	Ν	-0.052	-0.002	0.120	0.017	-0.001	0.008	0.017	-0.001	0.008
31	Ν	-0.051	0.006	0.113	-0.051	0.095	-0.100	-0.050	0.096	-0.101
32	С	0.000	0.006	0.002	-0.036	0.047	-0.045	-0.036	0.047	-0.046
33	С	0.031	-0.002	0.016	-0.037	0.041	-0.040	-0.037	0.042	-0.040
34	С	-0.032	0.002	0.036	-0.070	0.044	-0.042	-0.070	0.045	-0.042
35	С	0.088	0.003	0.029	-0.060	0.051	-0.048	-0.060	0.051	-0.048
36	С	0.090	0.002	0.030	-0.051	0.032	-0.028	-0.050	0.032	-0.030
37	С	-0.037	0.001	0.037	0.082	0.066	-0.062	0.082	0.067	-0.062
38	С	-0.029	0.002	0.025	0.024	0.025	-0.026	0.022	0.026	-0.034
39	С	0.074	0.001	0.021	0.022	0.024	-0.030	0.022	0.024	-0.026
40	С	0.075	0.001	0.019	0.044	0.023	-0.022	0.044	0.023	-0.021
41	С	-0.024	0.002	0.031	0.042	0.027	-0.025	0.042	0.027	-0.026
42	С	-0.013	0.004	0.049	0.046	0.025	-0.024	0.046	0.025	-0.025
43	С	-0.076	0.003	0.037	0.048	0.028	-0.028	0.047	0.028	-0.027
44	Н	0.057	0.000	0.022	0.043	0.027	-0.025	0.043	0.028	-0.026
45	Н	0.050	0.000	0.020	0.052	0.031	-0.029	0.052	0.031	-0.029
46	Н	0.052	0.002	0.020	0.049	0.015	-0.010	0.050	0.015	-0.012
47	Н	0.056	0.002	0.021	0.051	0.020	-0.020	0.044	0.019	-0.026
48	F	-0.091	0.000	0.023	0.046	0.019	-0.023	0.050	0.019	-0.020
49	F	-0.082	0.004	0.019	-0.144	0.049	-0.064	-0.140	0.050	-0.069
50	F	-0.091	0.000	0.024	-0.048	0.026	-0.024	-0.050	0.026	-0.021
51	F	-0.083	0.004	0.019	-0.136	0.069	-0.066	-0.136	0.070	-0.066
52	С	0.216	0.001	0.025	0.049	0.011	-0.009	0.049	0.011	-0.007
53	0	-0.284	0.004	0.044	0.005	0.018	-0.016	0.005	0.018	-0.016
54	0	-0.175	0.001	0.019	0.040	0.019	-0.018	0.040	0.019	-0.018
55	Н	0.192	0.002	0.017	0.052	0.023	-0.021	0.052	0.023	-0.021
56	I/Br/H	0.042	-0.019	0.100	0.040	0.019	-0.018	0.040	0.019	-0.018

Atoms	IC			ПС			ШС		
	q	<i>f</i> ⁻	Δf	q	f ⁻	Δf	q	<i>f</i> ⁻	Δf
1 C	-0.019	0.065	-0.068	-0.019	0.064	-0.066	-0.049	-0.003	0.124

2	С	-0.026	0.035	-0.028	-0.028	0.037	-0.029	-0.052	0.006	0.111
3	С	0.019	-0.002	0.009	0.017	-0.001	0.008	-0.001	0.005	0.003
4	С	-0.051	0.096	-0.100	-0.051	0.096	-0.100	0.033	-0.002	0.020
5	С	-0.035	0.047	-0.045	-0.036	0.047	-0.045	-0.028	0.002	0.037
6	С	-0.036	0.041	-0.040	-0.037	0.041	-0.040	0.088	0.001	0.033
7	С	-0.070	0.045	-0.043	-0.070	0.045	-0.042	0.090	0.003	0.031
8	С	-0.059	0.051	-0.049	-0.060	0.051	-0.048	-0.032	0.001	0.040
9	С	-0.049	0.031	-0.027	-0.050	0.032	-0.029	-0.020	0.002	0.027
10	С	0.083	0.066	-0.062	0.082	0.066	-0.062	0.086	-0.004	0.032
11	С	0.025	0.024	-0.027	0.022	0.025	-0.030	0.087	-0.001	0.026
12	С	0.025	0.023	-0.026	0.023	0.024	-0.026	-0.021	0.003	0.033
13	Н	0.044	0.023	-0.022	0.044	0.023	-0.022	0.017	0.005	0.053
14	Н	0.042	0.027	-0.025	0.042	0.027	-0.026	-0.056	-0.011	0.074
15	Н	0.046	0.025	-0.025	0.046	0.025	-0.025	0.060	0.001	0.022
16	Н	0.048	0.028	-0.028	0.047	0.028	-0.027	0.053	0.000	0.021
17	Н	0.043	0.028	-0.026	0.043	0.027	-0.026	0.062	0.002	0.022
18	Н	0.052	0.031	-0.029	0.052	0.031	-0.029	0.062	0.003	0.023
19	Н	0.051	0.014	-0.010	0.050	0.015	-0.011	-0.094	-0.001	0.028
20	Н	0.050	0.019	-0.020	0.046	0.019	-0.023	-0.083	0.005	0.021
21	Н	0.050	0.018	-0.020	0.051	0.019	-0.020	-0.090	-0.005	0.033
22	Ν	-0.138	0.046	-0.058	-0.145	0.049	-0.064	-0.085	0.003	0.022
23	С	-0.047	0.025	-0.022	-0.049	0.026	-0.022	0.067	0.001	0.023
24	0	-0.136	0.070	-0.067	-0.136	0.069	-0.066	-0.211	0.009	0.076
25	Н	0.050	0.011	-0.007	0.049	0.011	-0.007	0.048	-0.006	0.030
26	С	0.006	0.018	-0.017	0.006	0.018	-0.016	-0.019	0.065	-0.067
27	Н	0.040	0.019	-0.018	0.040	0.019	-0.018	-0.028	0.037	-0.028
28	Н	0.053	0.023	-0.021	0.052	0.023	-0.021	0.017	-0.001	0.008
29	Н	0.040	0.019	-0.018	0.040	0.019	-0.018	-0.051	0.096	-0.101
30	Ν	-0.050	-0.002	0.121	-0.050	-0.002	0.120	-0.036	0.047	-0.046
31	Ν	-0.053	0.006	0.111	-0.052	0.006	0.111	-0.037	0.042	-0.040
32	С	0.000	0.006	0.001	-0.002	0.006	0.002	-0.070	0.045	-0.042
33	С	0.033	-0.002	0.017	0.032	-0.002	0.016	-0.059	0.051	-0.048
34	С	-0.028	0.002	0.036	-0.028	0.002	0.036	-0.050	0.032	-0.030

35	С	0.090	0.002	0.030	0.091	0.002	0.032	0.082	0.067	-0.062
36	С	0.091	0.002	0.031	0.093	0.002	0.032	0.022	0.026	-0.034
37	С	-0.031	0.001	0.038	-0.031	0.001	0.038	0.022	0.024	-0.026
38	С	-0.020	0.002	0.025	-0.020	0.002	0.025	0.044	0.023	-0.021
39	С	0.075	0.001	0.021	0.078	0.000	0.023	0.042	0.027	-0.026
40	С	0.075	0.001	0.019	0.079	0.001	0.020	0.046	0.025	-0.025
41	С	-0.021	0.002	0.032	-0.021	0.002	0.031	0.047	0.028	-0.027
42	С	0.017	0.005	0.051	0.017	0.005	0.051	0.043	0.028	-0.026
43	С	-0.075	0.003	0.038	-0.030	-0.001	0.047	0.052	0.032	-0.029
44	Н	0.060	0.001	0.022	0.060	0.001	0.021	0.050	0.015	-0.012
45	Н	0.054	0.000	0.020	0.053	0.000	0.020	0.043	0.019	-0.026
46	Н	0.062	0.002	0.021	0.062	0.002	0.021	0.050	0.019	-0.020
47	Н	0.063	0.002	0.022	0.063	0.002	0.022	-0.140	0.050	-0.069
48	F	-0.090	0.000	0.023	-0.085	0.000	0.024	-0.049	0.026	-0.021
49	F	-0.081	0.004	0.020	-0.079	0.004	0.021	-0.136	0.070	-0.066
50	F	-0.089	0.000	0.024	-0.086	-0.002	0.027	0.049	0.011	-0.007
51	F	-0.082	0.004	0.019	-0.081	0.004	0.021	0.006	0.018	-0.016
52	С	0.067	0.001	0.021	0.067	0.001	0.021	0.040	0.019	-0.018
53	Ν	-0.211	0.008	0.073	0.008	-0.020	0.097	0.052	0.023	-0.021
54	I/Br/H	0.045	-0.019	0.101	-0.210	0.008	0.073	0.040	0.019	-0.018

Atoms		ID			IID			IIID		
		q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf
1	С	-0.019	0.065	-0.068	-0.048	-0.002	0.000	-0.047	-0.002	0.116
2	С	-0.026	0.035	-0.028	-0.052	0.006	0.003	-0.052	0.006	0.095
3	С	0.019	-0.002	0.009	-0.002	0.006	0.002	-0.001	0.005	0.000
4	С	-0.051	0.096	-0.100	0.035	-0.002	0.000	0.035	-0.002	0.026
5	С	-0.035	0.047	-0.045	-0.027	0.002	0.001	-0.028	0.002	0.036
6	С	-0.036	0.041	-0.040	0.092	0.002	0.001	0.089	0.003	0.028
7	С	-0.070	0.045	-0.043	0.093	0.002	0.001	0.089	0.001	0.029
8	C	-0.059	0.052	-0.049	-0.031	0.001	0.001	-0.031	0.001	0.038
9	С	-0.049	0.031	-0.028	-0.027	0.002	0.001	-0.028	0.002	0.027

10	С	0.083	0.066	-0.062	0.078	0.000	0.001	0.088	-0.001	0.026
11	С	0.025	0.024	-0.027	0.079	0.001	0.001	0.086	-0.004	0.028
12	С	0.025	0.023	-0.026	-0.028	0.002	0.001	-0.028	0.002	0.036
13	Н	0.044	0.023	-0.022	0.028	0.004	0.001	0.028	0.005	0.044
14	Н	0.042	0.027	-0.025	-0.030	-0.001	0.002	-0.056	-0.011	0.069
15	Н	0.046	0.025	-0.025	0.061	0.001	0.000	0.061	0.000	0.023
16	Н	0.048	0.028	-0.028	0.054	0.000	0.000	0.054	0.000	0.021
17	Н	0.043	0.028	-0.026	0.060	0.002	0.001	0.060	0.002	0.020
18	Н	0.052	0.031	-0.029	0.061	0.002	0.001	0.060	0.002	0.022
19	Н	0.051	0.014	-0.010	-0.085	0.000	0.001	-0.090	-0.006	0.030
20	Н	0.050	0.019	-0.020	-0.079	0.004	0.002	-0.084	0.003	0.020
21	Н	0.050	0.018	-0.020	-0.086	-0.002	0.001	-0.093	0.000	0.027
22	Ν	-0.138	0.046	-0.057	-0.080	0.004	0.002	-0.084	0.005	0.018
23	С	-0.047	0.025	-0.022	0.009	-0.020	-0.002	0.048	-0.006	0.028
24	0	-0.136	0.070	-0.067	0.257	0.001	0.001	0.257	0.001	0.029
25	Н	0.050	0.011	-0.007	-0.204	0.005	0.002	-0.203	0.005	0.064
26	С	0.006	0.018	-0.017	-0.203	0.004	0.002	-0.204	0.005	0.064
27	Н	0.040	0.019	-0.018	-0.019	0.064	-0.056	-0.019	0.065	-0.067
28	Н	0.053	0.023	-0.021	-0.028	0.037	0.058	-0.027	0.036	-0.028
29	Н	0.040	0.019	-0.018	0.017	-0.001	0.053	0.017	-0.001	0.008
30	Ν	-0.048	-0.002	0.114	-0.051	0.095	-0.034	-0.051	0.096	-0.101
31	Ν	-0.053	0.006	0.097	-0.036	0.047	-0.010	-0.035	0.047	-0.046
32	С	-0.001	0.006	-0.001	-0.037	0.041	-0.013	-0.037	0.042	-0.040
33	С	0.036	-0.002	0.022	-0.070	0.045	-0.023	-0.070	0.045	-0.043
34	С	-0.027	0.002	0.035	-0.059	0.051	-0.025	-0.059	0.052	-0.048
35	С	0.091	0.002	0.028	-0.050	0.032	0.011	-0.050	0.032	-0.030
36	С	0.092	0.002	0.029	0.082	0.066	-0.019	0.082	0.067	-0.062
37	С	-0.031	0.001	0.036	0.022	0.025	0.027	0.022	0.026	-0.033
38	С	-0.028	0.002	0.026	0.023	0.024	0.020	0.022	0.024	-0.026
39	С	0.075	0.001	0.020	0.044	0.023	0.009	0.044	0.023	-0.021
40	С	0.075	0.001	0.018	0.042	0.027	0.002	0.042	0.027	-0.026
41	С	-0.028	0.002	0.034	0.046	0.025	-0.009	0.046	0.025	-0.025
42	С	0.028	0.004	0.043	0.047	0.028	-0.011	0.047	0.028	-0.027

43 (C	-0.074	0.003	0.035	0.043	0.027	-0.010	0.043	0.028	-0.026
44 H	H	0.061	0.001	0.022	0.052	0.031	-0.010	0.052	0.032	-0.029
45 H	Η	0.054	0.000	0.020	0.050	0.015	0.011	0.050	0.015	-0.012
46 H	Η	0.060	0.002	0.019	0.046	0.019	0.012	0.044	0.019	-0.025
47 H	Η	0.060	0.002	0.021	0.051	0.019	0.011	0.050	0.019	-0.020
48 H	Ţ	-0.089	0.000	0.022	-0.145	0.049	0.028	-0.140	0.050	-0.067
49 H	Ţ	-0.080	0.004	0.019	-0.049	0.026	0.019	-0.049	0.026	-0.021
50 H	<u> </u>	-0.089	0.000	0.022	-0.136	0.070	-0.044	-0.136	0.070	-0.067
51 H	Ţ	-0.081	0.004	0.018	0.049	0.011	0.012	0.049	0.011	-0.007
52 I	/Br/H	0.047	-0.019	0.097	0.006	0.018	-0.008	0.006	0.018	-0.016
53 N	N	0.257	0.001	0.026	0.040	0.019	-0.010	0.040	0.019	-0.018
54 (C	-0.203	0.004	0.059	0.052	0.023	-0.008	0.052	0.023	-0.021
55 (0	-0.204	0.004	0.059	0.040	0.019	-0.010	0.040	0.019	-0.018

Atoms		IE			IIE			IIIE		
		q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf
1	Ν	-0.077	0.056	-0.031	-0.054	0.001	0.132	-0.054	0.004	0.017
2	Ν	-0.055	0.001	0.037	-0.077	0.056	0.055	-0.076	-0.005	0.012
3	С	0.002	0.003	0.008	-0.003	0.083	-0.083	-0.003	-0.001	0.000
4	С	-0.002	0.082	-0.083	0.001	0.003	0.012	0.001	0.006	0.004
5	С	-0.033	0.031	-0.019	-0.035	0.028	0.012	-0.035	0.001	0.005
6	С	0.082	0.018	-0.007	0.085	0.016	0.017	0.082	0.003	0.005
7	С	0.083	0.015	-0.005	-0.032	0.031	0.008	-0.033	0.002	0.005
8	С	-0.035	0.029	-0.017	0.083	0.018	0.015	0.080	0.001	0.005
9	С	-0.070	0.054	-0.046	-0.070	0.055	-0.031	-0.070	0.002	0.003
10	С	0.072	0.012	-0.003	0.076	0.012	0.011	0.084	-0.001	0.004
11	С	0.073	0.011	-0.004	-0.076	0.061	-0.039	-0.076	0.002	0.003
12	С	-0.076	0.061	-0.053	0.075	0.012	0.013	0.082	-0.005	0.004
13	С	0.057	0.029	-0.013	0.057	0.029	0.019	0.056	0.004	0.006
14	С	-0.082	0.023	-0.008	-0.038	0.026	0.021	-0.068	-0.011	0.006
15	Н	0.053	0.026	-0.020	0.048	0.023	-0.003	0.048	0.000	0.002
16	Н	0.048	0.023	-0.017	0.053	0.026	-0.005	0.053	0.001	0.003

17	Η	0.039	0.026	-0.020	0.040	0.026	-0.007	0.039	0.002	0.002
18	Н	0.039	0.028	-0.021	0.039	0.028	-0.009	0.039	0.002	0.002
19	F	-0.094	0.015	-0.008	-0.087	0.012	0.012	-0.091	0.005	0.004
20	F	-0.088	0.011	-0.002	-0.089	0.015	0.010	-0.100	0.000	0.004
21	F	-0.094	0.015	-0.008	-0.088	0.014	0.012	-0.092	0.003	0.004
22	F	-0.089	0.013	-0.003	-0.091	0.016	0.011	-0.095	-0.006	0.003
23	I/Br/H	0.031	0.062	-0.059	-0.002	0.056	0.022	-0.054	0.004	0.003
24	Ν	-0.053	0.110	-0.101	-0.053	0.112	-0.087	-0.031	0.001	0.001
25	С	-0.031	0.023	-0.020	-0.031	0.024	-0.014	0.037	0.001	0.002
26	Н	0.037	0.031	-0.027	0.038	0.032	-0.019	0.045	0.002	0.002
27	Н	0.045	0.025	-0.019	0.045	0.025	-0.009	0.037	0.001	0.002
28	Н	0.037	0.032	-0.027	0.037	0.032	-0.020	-0.031	0.001	0.001
29	С	-0.031	0.023	-0.020	-0.031	0.023	-0.013	0.037	0.002	0.002
30	Н	0.037	0.032	-0.027	0.037	0.032	-0.019	0.045	0.002	0.002
31	Н	0.045	0.025	-0.019	0.045	0.025	-0.010	0.037	0.001	0.002
32	Н	0.037	0.031	-0.027	0.037	0.032	-0.019	0.045	-0.007	0.004
33	С	-0.019	-0.002	0.007	-0.019	-0.002	-0.001	-0.019	0.063	-0.054
34	С	-0.027	0.005	0.067	-0.029	0.005	0.002	-0.029	0.039	0.046
35	С	0.018	0.005	0.036	0.016	0.005	0.002	0.016	0.000	0.045
36	С	-0.050	-0.003	0.047	-0.050	-0.003	-0.001	-0.050	0.095	-0.039
37	С	-0.035	0.001	0.027	-0.036	0.001	0.000	-0.036	0.047	-0.013
38	С	-0.037	0.001	0.021	-0.037	0.001	0.000	-0.037	0.042	-0.015
39	С	-0.070	0.002	0.015	-0.071	0.002	0.001	-0.071	0.044	-0.024
40	С	-0.060	0.002	0.018	-0.060	0.002	0.001	-0.060	0.050	-0.026
41	С	-0.050	0.003	0.030	-0.052	0.003	0.001	-0.052	0.032	0.005
42	С	0.082	0.004	0.033	0.081	0.004	0.001	0.081	0.066	-0.022
43	С	0.025	-0.002	0.041	0.023	-0.001	0.000	0.022	0.026	0.020
44	С	0.025	-0.002	0.034	0.021	-0.005	-0.002	0.023	0.025	0.013
45	Н	0.044	0.001	0.023	0.044	0.000	0.000	0.044	0.023	0.005
46	Н	0.042	0.001	0.021	0.041	0.001	0.000	0.041	0.027	-0.001
47	Н	0.046	0.000	0.012	0.046	0.000	0.000	0.046	0.025	-0.010
48	Н	0.048	0.000	0.013	0.047	0.000	0.000	0.048	0.028	-0.012
49	Н	0.043	0.002	0.012	0.042	0.002	0.000	0.042	0.027	-0.011

50 H	0.052	0.002	0.015	0.052	0.002	0.001	0.052	0.031	-0.011
51 H	0.050	0.003	0.017	0.049	0.004	0.001	0.049	0.015	0.008
52 H	0.050	-0.001	0.024	0.051	0.000	0.000	0.050	0.020	0.009
53 H	0.050	-0.001	0.023	0.044	-0.004	-0.001	0.043	0.018	0.006
54 N	-0.138	-0.008	0.062	-0.146	-0.010	-0.005	-0.140	0.052	0.018
55 C	-0.048	0.002	0.032	-0.049	0.001	0.001	-0.049	0.027	0.013
56 O	-0.136	0.003	0.017	-0.137	0.003	0.001	-0.137	0.068	-0.045
57 H	0.050	0.003	0.015	0.049	0.002	0.001	0.049	0.012	0.009
58 C	0.006	0.001	0.007	0.005	0.001	0.000	0.005	0.018	-0.008
59 H	0.040	0.001	0.006	0.040	0.001	0.000	0.040	0.019	-0.010
60 H	0.052	0.002	0.010	0.052	0.002	0.001	0.052	0.023	-0.009
61 H	0.040	0.001	0.007	0.040	0.001	0.000	0.040	0.019	-0.010

Atoms		IF			IIF			IIIF		
		q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf	q	<i>f</i> ⁻	Δf
1	Ν	-0.068	-0.003	0.014	-0.068	-0.003	0.121	-0.019	0.063	-0.055
2	Ν	-0.052	0.004	0.018	-0.052	0.004	0.131	-0.029	0.039	0.053
3	С	0.001	0.006	0.003	0.000	0.006	0.008	0.016	0.000	0.046
4	С	0.005	-0.001	0.000	0.005	-0.001	0.005	-0.050	0.095	-0.034
5	С	-0.030	0.002	0.006	-0.030	0.002	0.040	-0.036	0.047	-0.009
6	С	0.084	0.003	0.005	0.085	0.002	0.032	-0.037	0.042	-0.012
7	С	0.085	0.002	0.005	0.086	0.003	0.031	-0.071	0.044	-0.021
8	С	-0.033	0.001	0.005	-0.033	0.001	0.036	-0.060	0.051	-0.023
9	С	-0.056	0.003	0.004	-0.056	0.002	0.025	-0.051	0.033	0.009
10	С	0.073	0.001	0.004	0.076	0.000	0.026	0.081	0.066	-0.017
11	С	0.073	0.001	0.004	0.077	0.001	0.022	0.023	0.026	0.027
12	С	-0.072	0.002	0.003	-0.072	0.002	0.023	0.022	0.025	0.019
13	С	0.089	0.004	0.007	0.089	0.004	0.049	0.043	0.023	0.010
14	С	-0.080	0.003	0.008	-0.036	-0.001	0.049	0.042	0.027	0.004
15	Η	0.054	0.001	0.003	0.055	0.001	0.021	0.046	0.025	-0.007
16	Η	0.050	0.000	0.002	0.050	0.000	0.019	0.047	0.028	-0.009
17	Η	0.052	0.002	0.003	0.053	0.002	0.021	0.043	0.027	-0.008

18	Н	0.044	0.002	0.003	0.044	0.002	0.019	0.052	0.031	-0.008
19	F	-0.093	0.000	0.004	-0.088	0.001	0.025	0.050	0.015	0.012
20	F	-0.086	0.004	0.004	-0.085	0.004	0.020	0.044	0.019	0.013
21	F	-0.093	0.000	0.004	-0.090	-0.003	0.030	0.050	0.020	0.012
22	F	-0.087	0.004	0.004	-0.086	0.003	0.023	-0.140	0.051	0.030
23	0	-0.128	0.003	0.004	-0.128	0.003	0.024	-0.050	0.026	0.017
24	С	0.035	0.000	0.001	0.035	0.000	0.005	-0.137	0.069	-0.043
25	Н	0.034	0.001	0.001	0.034	0.001	0.007	0.048	0.012	0.012
26	Н	0.034	0.001	0.001	0.034	0.001	0.007	0.005	0.018	-0.007
27	С	-0.053	0.000	0.000	-0.053	0.000	0.002	0.040	0.019	-0.009
28	Η	0.036	0.000	0.001	0.036	0.000	0.004	0.052	0.023	-0.007
29	Н	0.036	0.001	0.001	0.036	0.000	0.004	0.040	0.019	-0.009
30	С	-0.050	0.000	0.000	-0.049	0.000	0.001	-0.067	-0.003	0.004
31	Η	0.028	0.000	0.000	0.028	0.000	0.002	-0.053	0.004	0.007
32	Н	0.028	0.000	0.000	0.028	0.000	0.002	0.000	0.006	0.004
33	С	-0.050	0.000	0.000	-0.050	0.000	0.001	0.005	-0.002	0.001
34	Н	0.029	0.000	0.000	0.029	0.000	0.002	-0.031	0.002	0.001
35	Н	0.029	0.000	0.000	0.029	0.000	0.002	0.082	0.003	0.002
36	С	-0.052	0.000	0.000	-0.052	0.000	0.001	0.083	0.001	0.002
37	Η	0.027	0.000	0.000	0.027	0.000	0.001	-0.033	0.001	0.001
38	Η	0.027	0.000	0.000	0.027	0.000	0.001	-0.057	0.003	0.000
39	С	-0.052	0.000	0.000	-0.052	0.000	0.001	0.085	-0.001	0.000
40	Η	0.027	0.000	0.000	0.027	0.000	0.001	0.083	-0.004	-0.002
41	Η	0.027	0.000	0.000	0.027	0.000	0.001	-0.073	0.002	0.000
42	С	-0.051	0.000	0.000	-0.051	0.000	0.001	0.088	0.005	0.001
43	Η	0.027	0.000	0.000	0.027	0.000	0.001	-0.065	-0.011	-0.004
44	Η	0.027	0.000	0.000	0.027	0.000	0.001	0.054	0.000	-0.001
45	С	-0.092	0.000	0.000	-0.092	0.000	0.001	0.050	0.000	-0.001
46	Н	0.030	0.000	0.000	0.030	0.000	0.001	0.052	0.003	0.000
47	Н	0.032	0.001	0.000	0.032	0.001	0.002	0.043	0.002	0.000
48	Н	0.030	0.000	0.000	0.030	0.000	0.001	-0.094	-0.006	-0.003
49	I/Br/H	0.034	-0.018	0.009	0.000	-0.019	0.099	-0.090	0.003	0.001

50	С	-0.019	0.064	-0.057	-0.019	0.063	-0.065	-0.098	0.000	-0.001
51	С	-0.027	0.037	0.047	-0.029	0.039	-0.032	-0.090	0.005	0.001
52	С	0.018	-0.002	0.048	0.016	-0.001	0.007	0.046	-0.007	0.000
53	С	-0.051	0.095	-0.043	-0.050	0.095	-0.099	-0.128	0.003	0.000
54	С	-0.035	0.047	-0.014	-0.036	0.047	-0.045	0.035	0.000	0.000
55	С	-0.036	0.041	-0.016	-0.037	0.042	-0.040	0.034	0.001	0.000
56	С	-0.070	0.044	-0.025	-0.071	0.044	-0.041	0.034	0.001	0.000
57	С	-0.059	0.051	-0.028	-0.060	0.050	-0.048	-0.053	0.000	0.000
58	С	-0.050	0.031	0.006	-0.052	0.032	-0.027	0.036	0.001	0.000
59	С	0.082	0.066	-0.024	0.081	0.066	-0.061	0.036	0.001	0.000
60	С	0.025	0.024	0.021	0.023	0.025	-0.026	-0.049	0.000	0.000
61	С	0.025	0.023	0.015	0.021	0.024	-0.030	0.028	0.000	0.000
62	Н	0.044	0.023	0.005	0.044	0.023	-0.023	0.028	0.000	0.000
63	Н	0.042	0.027	-0.001	0.042	0.027	-0.025	-0.050	0.000	0.000
64	Н	0.046	0.025	-0.011	0.046	0.025	-0.024	0.029	0.000	0.000
65	Н	0.048	0.028	-0.013	0.048	0.028	-0.028	0.029	0.000	0.000
66	Н	0.043	0.027	-0.012	0.042	0.027	-0.025	-0.052	0.000	0.000
67	Н	0.052	0.031	-0.012	0.052	0.031	-0.029	0.027	0.000	0.000
68	Н	0.050	0.015	0.008	0.049	0.015	-0.010	0.027	0.000	0.000
69	Н	0.050	0.019	0.008	0.051	0.020	-0.020	-0.052	0.000	0.000
70	Н	0.050	0.018	0.007	0.045	0.019	-0.024	0.027	0.000	0.000
71	Ν	-0.138	0.047	0.017	-0.146	0.050	-0.065	0.027	0.000	0.000
72	С	-0.048	0.026	0.014	-0.049	0.027	-0.024	-0.051	0.000	0.000
73	0	-0.136	0.069	-0.046	-0.137	0.068	-0.065	0.027	0.000	0.000
74	Н	0.050	0.011	0.010	0.049	0.012	-0.009	0.027	0.000	0.000
75	С	0.006	0.018	-0.009	0.005	0.017	-0.016	-0.092	0.000	0.000
76	Н	0.040	0.019	-0.011	0.040	0.019	-0.018	0.030	0.000	0.000
77	Н	0.052	0.023	-0.009	0.052	0.023	-0.021	0.032	0.001	0.000
78	Н	0.040	0.019	-0.011	0.040	0.019	-0.018	0.030	0.000	0.000

Table S6: NBO charges Q (/*e*/), Donor (i)-acceptor (j) NBO transitions, stabilization energies $E^{(2)}$, E(j)-E(i) energy differences and their Fock matrix element F (i,j)

Complex	Q	Donor NBO	Acceptor NBO	E ⁽²⁾	E(j)-E(i)	F (i,j)
		(i)	(j)	kcal/mol	(au)	(<i>au</i>)
IA	0.043	CR (1) C ₅₀	BD* (2)C ₇ -C ₁₁	163.01	10.24	1.292
		BD* (2)C ₇ -C ₁₁	RY* (6)H ₅₃	138.47	0.06	0.181
IB	0.046	LP (1) N ₂₂	BD* (1)C ₄₃ -I ₅₆	12.05	0.58	0.076
		BD (1)C ₄₃ -I ₅₆	RY* (1)N ₂₂	0.29	1.69	0.020
IC	0.048	LP (1)N ₂₂	BD*(1)C ₄₃ -I ₅₄	12.41	0.58	0.077
		BD (1)C ₄₃ -I ₅₄	RY*(1)N ₂₂	0.29	1.69	0.020
ID	0.047	LP (1)N ₂₂	BD*(1)C ₄₃ -I ₅₂	12.54	0.58	0.077
		BD (1)C ₄₃ -I ₅₂	RY*(1)N ₂₂	0.29	1.69	0.020
IE	0.065	LP (1)N ₅₄	BD*(1)C ₁₄ -I ₂₃	10.95	0.59	0.072
		BD (1)C ₁₄ -I ₂₃	RY*(1)N ₅₄	0.29	1.68	0.020
IF	0.066	LP (1)N ₇₁	BD*(1)C ₁₄ -I ₄₉	11.28	0.59	0.073
		BD (1)C ₁₄ -I ₄₉	RY*(1)N71	0.29	1.68	0.020
IIA	0.028	LP (1) N ₄₆	BD* (1)C ₁₄ -Br ₂₄	7.12	0.61	0.060
		BD (1)C ₁₄ -Br ₂₄	RY* (1) N ₄₆	1.13	1.85	0.041
IIB	0.030	LP (1)N ₄₉	BD*(1)C ₁₄ -Br ₂₇	7.54	0.61	0.061
		BD (1)C ₁₄ -Br ₂₇	RY*(1)N ₄₉	1.17	1.86	0.042
IIC	0.033	LP (1)N ₂₂	BD*(1)C ₄₃ -Br ₅₃	7.72	0.61	0.062
		BD (1)C ₄₃ -Br ₅₃	RY*(1)N ₂₂	1.19	1.86	0.042
IID	0.033	LP (1)N ₄₈	$BD^{*}(1)C_{14}-Br_{23}$	7.81	0.61	0.062
		BD (1)C ₁₄ -Br ₂₃	RY*(1)N ₄₈	1.20	1.87	0.042
IIE	0.021	LP (1)N ₅₄	BD*(1)C ₁₄ -Br ₂₃	6.20	0.62	0.056
		BD (1)C ₁₄ -Br ₂₃	RY*(1)N ₅₄	1.03	1.84	0.039
IIF	0.025	LP (1)N ₇₁	BD*(1)C ₁₄ -Br ₄₉	6.56	0.62	0.057
		BD (1)C ₁₄ -Br ₄₉	RY*(1)N ₇₁	1.07	1.84	0.040
IIIA	0.017	LP (1) N ₄₆	BD* (1)C ₁₄ -H ₂₄	10.38	1.01	0.093
		LP (2) F ₂₀	BD* (1)C ₃₆ -H ₄₅	1.15	1.09	0.032
IIIB	0.018	LP (1)N ₄₉	BD*(1)C ₁₄ -H ₂₃	10.87	1.01	0.095
		LP (2)F ₁₉	BD*(1)C ₃₈ -H ₄₇	1.05	1.09	0.030
IIIC	0.021	LP (1)N ₄₇	BD*(1)C ₁₄ -H ₂₅	11.09	1.01	0.096
		LP (2)F ₂₁	BD*(1)C ₃₆ -H ₄₅	1.07	1.09	0.031

IIID	0.020	ID(1)N		11 22	1.01	0.007
ши	0.020	$LP(1)IN_{48}$	$BD^{*}(1)C_{14}-H_{23}$	11.55	1.01	0.097
		LP (2)F ₁₉	BD*(1)C ₃₇ -H ₄₆	0.99	1.09	0.029
IIIE	0.012	LP (1)N ₅₄	BD*(1)C ₁₄ -H ₃₂	9.69	1.02	0.090
		LP (2)F ₂₂	BD*(1)C ₄₄ -H ₅₃	1.26	1.09	0.033
IIIF	0.005	LP (1)N ₂₂	BD*(1)C ₄₃ -H ₅₂	10.03	1.02	0.091
		LP (2)F ₄₈	BD*(1)C ₁₁ -H ₂₀	1.22	1.09	0.033

BD for bonding orbitals, BD* label for anti-bonding orbitals, CR for core electrons, LP for valence lone pair orbitals and RY for Rydberg state

Table S7: Electron density (ρ) , Laplacian of electron density $(\nabla^2 \rho)$, Lagrangian kinetic energy G(r), Potential energy density V(r), electron energy density H(r) and the ratio of the kinetic to potential electron density G(r)/V(r) (all are in au)

Complexes	Interaction	ρ	$ abla^2 ho$	G(r)	V(r)	H(r)	-G(r)/V(r)
IA	I-N	0.210	0.652	0.144	-0.132	0.124	1.09
IB	I-N	0.217	0.669	0.153	-0.146	0.755	1.05
IC	I-N	0.220	0.679	0.156	-0.148	0.729	1.05
ID	I-N	0.222	0.682	0.157	-0.149	0.720	1.05
IE	I-N	0.206	0.638	0.146	-0.137	0.826	1.07
IF	I-N	0.209	0.647	0.148	-0.140	0.807	1.06
IIA	Br-N	0.198	0.627	0.140	-0.123	0.1657	1.14
IIB	Br-N	0.203	0.644	0.144	-0.127	0.166	1.13
IIC	Br-N	0.206	0.650	0.146	-0.129	0.165	1.13
IID	Br-N	0.207	0.653	0.146	-0.130	0.165	1.12
IIE	Br-N	0.185	0.591	0.131	-0.114	0.164	1.15
IIF	Br-N	0.190	0.606	0.135	-0.118	0.165	1.14
IIIA	H-N	0.205	0.498	0.129	-0.134	-0.467	0.96
	F-H	0.762	0.318	0.681	-0.565	0.116	1.21
IIIB	H-N	0.211	0.510	0.132	-0.137	-0.510	0.96
	F-H	0.727	0.308	0.652	-0.532	0.119	1.23
IIIC	H-N	0.213	0.514	0.134	-0.139	-0.529	0.96
	F-H	0.368	0.311	0.660	-0.541	0.118	1.22
IIID	H-N	0.216	0.520	0.135	-0.141	-0.548	0.96
	F-H	0.704	0.301	0.633	-0.512	0.121	1.24

IIIE	H-N	0.198	0.483	0.124	-0.128	-0.403	0.97
	F-H	0.796	0.328	0.708	-0.595	0.112	1.19
IIIF	H-N	0.201	0.490	0.127	-0.131	-0.438	0.97
	F-H	0.788	0.326	0.703	-0.589	0.113	1.19

Table S8: First hyperpolarizability β_o (*au*) values of Azo-X with different electron-withdrawing and electron-donating groups

Code(X)	Substituent	$oldsymbol{eta}_o$
	Α	3.2×10^{2}
	В	1.0×10^{3}
I	С	8.8×10 ²
	D	2.3×10 ³
	Ε	6.0×10 ³
	F	3.5×10 ⁴
	Α	2.2×10^{2}
	В	9.0×10 ²
п	С	6.4×10^{2}
	D	2.2×10 ³
	Ε	6.6×10 ³
	F	4.0×10 ³
	Α	7.1×10^{2}
	В	4.1×10^{1}
III	С	3.3×10 ²
	D	6.1×10 ³
	Ε	3.9×10 ³
	F	2.8×10 ³

Table S9: First hyperpolarizability $\beta_o(au)$ values for urea, *p*-nitroaniline and various stilbenes calculated at different DFT functionals/6-311++G(2d, 2p) level of theory

Reference Molecules	ωB97XD	B3LYP	CAM-B3LYP	B3LYP-D3	LC-BLYP	BHandHLYP
Urea	5.3x10 ¹	9.0x10 ¹	5.7 x10 ¹	9.0 x10 ¹	3.2 x10 ¹	5.5 x10 ¹
<i>p</i> -Nitroaniline	$1.2 \text{ x} 10^3$	1.6x10 ³	1.3x10 ³	1.6x10 ³	1.1x10 ³	1.2×10^3
4-Nitrostilbene	3.3x10 ³	8.1x10 ³	4.1x10 ³	8.0x10 ³	2.8x10 ³	4.2×10^3
4-(N,N- dimethylamino) stilbene	4.8x10 ³	5.0x10 ³	5.0x10 ³	5.0x10 ³	4.3x10 ³	4.6x10 ³
4-[<i>N</i> , <i>N</i> - dimethylamino]-4'- Nitro stilbene	1.2x10 ⁴	2.9 x10 ⁴	1.5x10 ⁴	2.9x10 ⁴	8.3x10 ³	1.5x10 ⁴
4-Amine-4'-nitro stilbene	8.5x10 ³	2.0x10 ⁴	1.1x10 ⁴	2.0x10 ⁴	6.1x10 ³	1.1x10 ⁴
4-Bromo-4' -nitro stilbene	4.3x10 ³	1.1x10 ⁴	5.3x10 ³	1.1x10 ⁴	2.8x10 ³	5.4x10 ³
4-Alkoxy-4' -nitro stilbene	6.7x10 ³	1.6x10 ⁴	8.2x10 ³	1.6x10 ⁴	4.6x10 ³	8.1x10 ³

Table S10: First hyperpolarizability $\beta_o(au)$ values for urea, *p*-nitroaniline and various stilbenes calculated at **CAM-B3LYP**/different basis sets level of theory

Reference Molecules	6-31+G(d, p)	6-311+G(d, p)	6-311++G(2d, 2p)	6-311++G(3d, 3p)
Urea	2.9x10 ¹	4.2x10 ¹	5.7 x10 ¹	5.7 x10 ¹
<i>p</i> -Nitroaniline	$1.4 \text{ x} 10^3$	1.4x10 ³	1.3x10 ³	1.3x10 ³
4-Nitrostilbene	$4.2x10^{3}$	4.3x10 ³	4.1x10 ³	4.1x10 ³
4-(<i>N</i> , <i>N</i> -dimethylamino) stilbene	5.1x10 ³	5.1x10 ³	5.0x10 ³	5.0x10 ³
4-[<i>N</i> , <i>N</i> -dimethylamino]- 4'-Nitro stilbene	1.5x10 ⁴	1.5x10 ⁴	$1.5 x 10^4$	1.5x10 ⁴
4-Amine-4'-nitro stilbene	1.1x10 ⁴	1.1x10 ⁴	1.1x10 ⁴	1.0x10 ⁴

4-Bromo-4′ -nitro stilbene	5.4x10 ³	5.5x10 ³	5.3x10 ³	5.2x10 ³
4-Alkoxy-4′ -nitro stilbene	8.4x10 ³	8.4x10 ³	8.2x10 ³	8.1x10 ³

Table S11: Static first hyperpolarizability $\beta_o(au)$ values of the designed supramolecular complexes at ω B97XD/6-311++G(2d, 2p) and CAM-B3LYP/6-31+G(d, p)

Complexes	β_o	β_o
	(ωB97XD/6- 311++G(2d, 2p)	(CAM-B3LYP/6- 31+G(d, p)
ΙΑ	8.5×10^3	9.3×10 ³
IB	1.1×10^{4}	1.2×10 ⁴
IC	1.1×10^{4}	1.3×10^{4}
ID	1.3×10^{4}	1.5×10^{4}
IE	1.1×10^{3}	1.6×10 ³
IF	4.3×10 ³	5.1×10 ³
IIA	6.8×10 ³	8.0×10 ³
IIB	9.0×10 ³	1.1×10 ⁴
ПС	9.4×10 ³	1.1×10^{4}
IID	1.1×10^{4}	1.3×10 ⁴
IIE	2.6×10 ³	6.0×10 ¹
IIF	2.8×10 ³	3.6×10 ³
IIIA	3.8×10 ³	4.3×10 ³
IIIB	5.2×10 ³	5.7×10 ³
шс	5.1×10 ³	5.6×10 ³
IIID	6.7×10 ³	7.3×10 ³
IIIE	3.2×10 ³	3.3×10 ³
IIIF	1.6×10 ³	1.9×10 ³

Complexes	βo
IA	8.5×10^3
iA	7.0×10^3
IB	1.1×10^4
iB	7.2×10^{3}
IC	1.1×10^4
iC	7.5×10^{3}
ID	1.3×10^4
iD	7.6×10^3
ПА	6.8×10^3
iiA	5.7×10^{3}
IID	1.1×10^4
iiD	6.1×10^3
ША	3.8×10 ³
iiiA	4.0×10^{3}
IIID	6.7×10^3
iiiD	4.1×10^{3}

Table S12: First hyperpolarizability $\beta_o(au)$ values of *trans* and *cis* supramolecular complexes