

Supporting Information

CoP-modified CdS for enhanced stability and photocatalytic hydrogen production under visible light

Zijun Li^{a#}, Yiqiao Wang^{a#}, Yongping Luo^b, Rui Xiao^a, Hao Ye^a, Yu Xie^{a*}, Yongcun

Ma^a, Yong Chen^a, Yun Ling^a

^a College of Environment and Chemical Engineering, Nanchang Hangkong University,
Nanchang 330063, China

^b School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China

*Corresponding authors E-mail addresses: xieyu_121@163.com (Y. Xie)

Tel.: +86(791) 83953408, Fax: +86(791) 83953373

These authors contributed equally to this work.

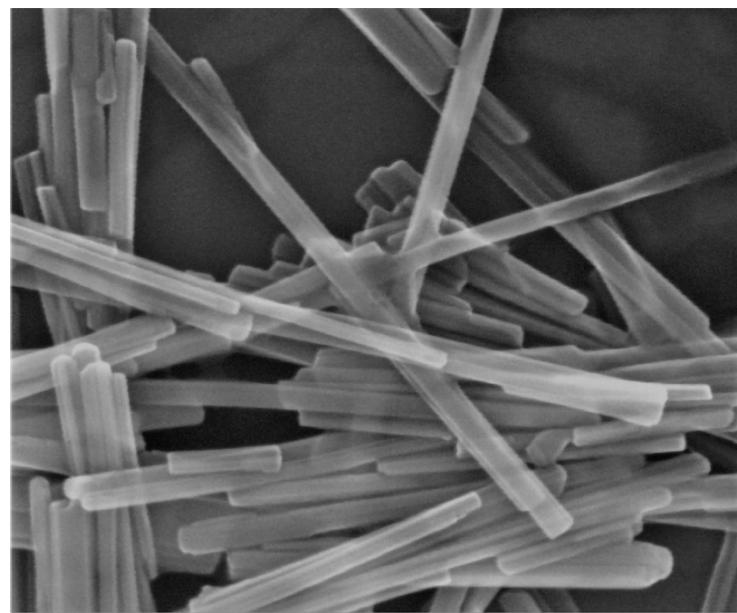


Fig. S1 SEM image of CdS

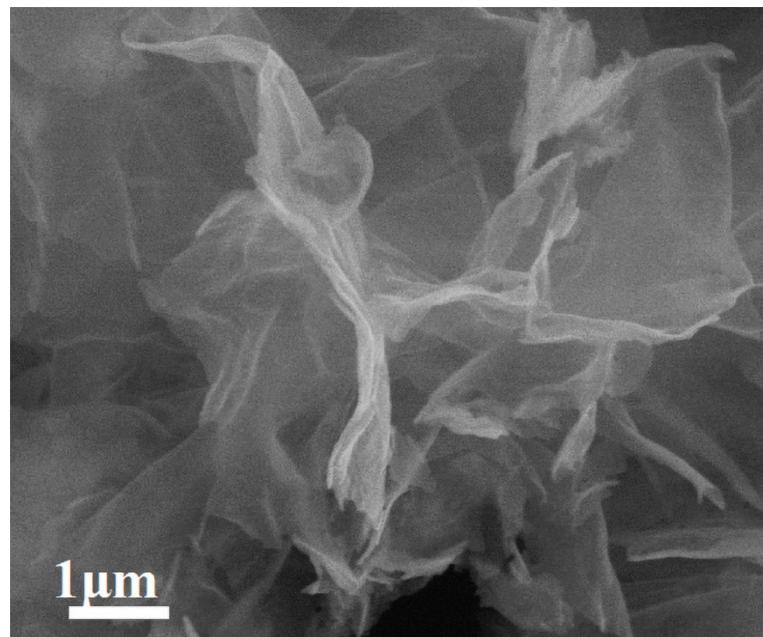


Fig. S2 SEM image of CoP

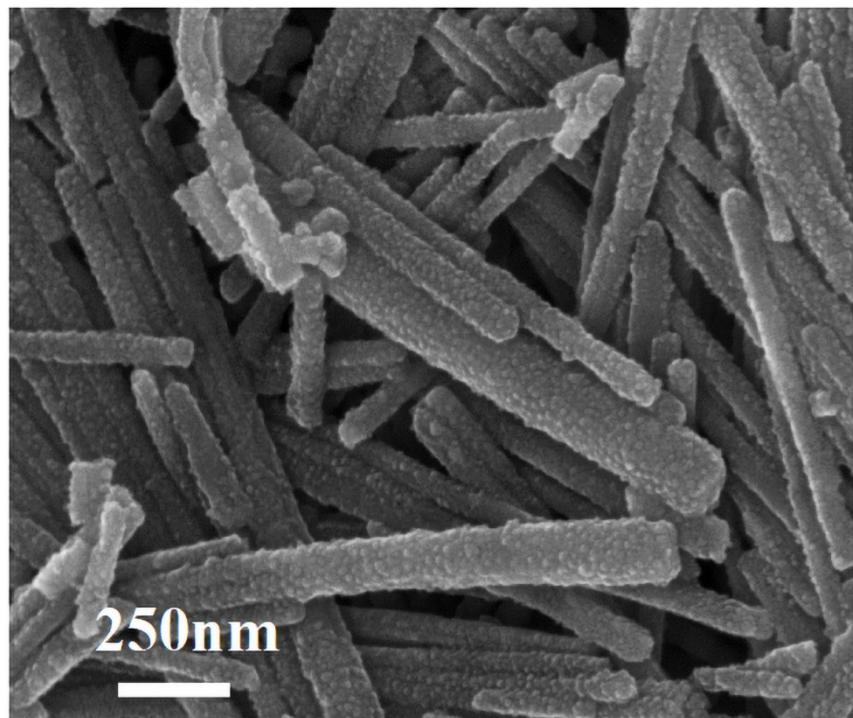


Fig. S3 SEM image of 10% CoP/CdS

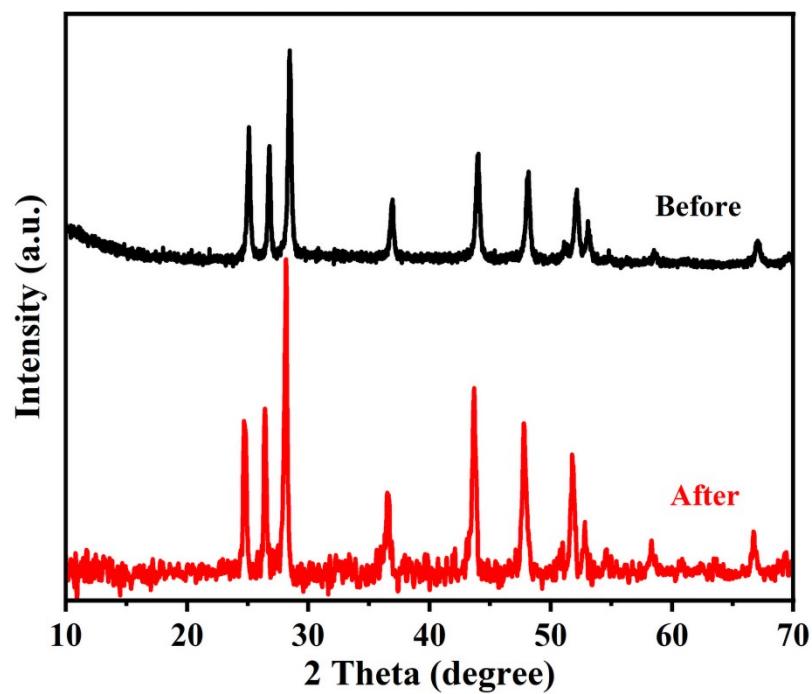


Fig. S4 XRD plot of 10% CoP/CdS before and after cycles

Table S1 The EDX of CoP

Element	Atomic	Atomic	Mass	Mass	Fit	error
	Fraction (%)	Error (%)	Fraction (%)	Error (%)	(%)	
Co	53.04	7.12	37.25	3.13	0.16	
P	46.96	8.88	62.75	9.88	0.13	

Table S2 Comparison of 10% CoP/CdS photocatalytic hydrogen production performance with other CdS-based photocatalytic materials

Catalyst	Condition	Performance	Reference
		($\mu\text{molh}^{-1}\text{g}^{-1}$)	
TiO ₂ /CdS	$\lambda > 365$ nm	1028	[S1]
V ₂ O ₅ /CdS/CuS	$\lambda > 420$ nm	1457.1	[S2]
Co-N-C/CdS	$\lambda > 420$ nm	905	[S3]
CdS/Cu ₂ S/SiO ₂	$\lambda > 420$ nm	1197	[S4]
SrTiO ₃ /CdS	$\lambda > 420$ nm	4537.9	[S5]
10% CoP/CdS	$\lambda > 420$ nm	4430	This work

Table S3 The AQY of all samples at 420 nm

Sample	CdS	CoP	8% CoP/CdS	10% CoP/CdS	12% CoP/CdS
AQY (%)	0.26	0	1.30	5.29	2.48

References

[S1] A.Y. Meng, B.C. Zhu, B. Zhong, L.Y. Zhang and B. Cheng, Direct Z-scheme TiO_2/CdS hierarchical photocatalyst for enhanced photocatalytic H_2 -production activity, *Appl. Surf. Sci.*, 2017, **422**, 518-527.

[S2] H.L. Fan, S.W. Sun, J.X. Ba, H. Cheng, C.Q. Xu, Y.H. Wang, J.C. Li, H.R. Fang, M.J. Li and D.H. Fan, Constructing $\text{V}_2\text{O}_5/\text{CdS}/\text{CuS}$ multi-level heterojunction for efficient photocatalytic hydrogen evolution, *Int. J. Hydrogen Energ.*, 2023, in press.

[S3] K. Wu, C.L. Wu, W.O. Bai, N. Li, Y.Q. Gao and L. Ge, CdS supported on ZIF-67-derived Co-N-C as efficient nano polyhedron photocatalysts for visible light induced hydrogen production, *Colloid Surface A*, 2023, **663**, 131089.

[S4] H.Y. Yu, H.O. Liang, J. Bai and C.P. Li, Sulfur vacancy and CdS phase transition synergistically boosting one-dimensional $\text{CdS}/\text{Cu}_2\text{S}/\text{SiO}_2$ hollow tube for photocatalytic hydrogen evolution, *Int. J. Hydrogen Energ.*, 2023, **48**, 15908-15920.

[S5] L.Q. Yu, X. Li, L.J. Duan, Y.P. Zhang and H.F. Zhu, Oxygen Vacancies-Induced Dendritic $\text{SrTiO}_3/\text{CdS}$ p–n Heterostructures Photocatalyst for Ultrahigh Hydrogen Evolution, *Solar RL*, 2023, in press, 2300259.

