Supplementary Information for "Crystal-liquid duality enhanced dynamical stability of hybrid perovskites"

^aBeijing Computational Science Research Center, Beijing 100193, China

Xuan-Yan Chen^a, Bai-Qing Zhao^a, Zheng Liu^a, Su-Huai Wei^{*a}, and Xie Zhang^{*a}

*e-mail: suhuaiwei@csrc.ac.cn; xiezhang@csrc.ac.cn

Fig. S1 Eigenmodes associated with imaginary frequency of CsPbI₃ at high-symmetry point M. Green arrows represent the direction of movement of atoms.

Fig. S2 Eigenmodes associated with imaginary frequency of CsPbI₃ at high-symmetry point R. Green arrows represent the direction of movement of atoms.

Fig. S3 Eigenmodes associated with imaginary frequency of FAPbI₃ at high-symmetry point M. Green arrows represent the direction of movement of atoms.

Fig. S4 Eigenmodes associated with imaginary frequency of FAPbI₃ at high-symmetry point R. Green arrows represent the direction of movement of atoms.

Fig. S5 Eigenmodes associated with imaginary frequency of MAPbI₃ at high-symmetry point R. Green arrows represent the direction of movement of atoms.

Fig. S6 Eigenmodes associated with imaginary frequency of MAPbI₃ at high-symmetry point M. Green arrows represent the direction of movement of atoms.