Supplementary Information

AuNRs attached TiO₂ NPs modified by cobalt-imidazolate frameworks as exceptional materials to improve the energy conversion efficiency in dyesensitized solar cells

Nafiseh Bagheri,¹ Javad Hassanzadeh,¹ Zainab B Al Ruqeishi,¹ Ninie Suhana Abdul Manan,^{2,3}

Haider A.J. Al Lawati,¹ Osama K. Abou-Zied,^{1,*}

¹Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Sultanate of Oman

²Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur,

Malaysia

³University of Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia

* Corresponding author. E-mail: abouzied@squ.edu.om

Fig. S1. TEM images of the synthesized AuNRs with different aspect ratios: A) 3.7, B) 3.4, C) 3.1, and D) 2.3.

Fig. S2. Absorption spectra of the synthesized AuNRs with different aspect ratios.

Fig. S3. XRD patterns of (a) AuNRs with aspect ratio of 3.4, (b) ZIF-67.

Fig. S4. A) N2 adsorption-desorption isotherms and B) pore-size distribution for TiO2 NPs (a) and TiO2/AuNR808

(b).

Fig. S5. The schematic representation of energy diagram of ZIF-67 (T_d) and electron transferring to conduction bond of TiO₂.

Table S1. Photovoltaic parameters of the fabricated DSSCs with photoanodes modified by TiO₂/AuNR₈₀₈/ZIF nanocomposite with different percentage of ZIF-67, sensitized with N719 dye under simulated AM 1.5G solar irradiation of 100 mW cm⁻²

Doroontogo					
Tereemage	Voc (V)	Jsc (mA	Pmax	FF	n%
of ZIF-67		cm ⁻²)	(mW)		17.0
4%	0.75	10.168	0.871	0.457	3.484
6%	0.76	14.792	1.482	0.527	5.928
8%	0.8	18.804	2.09385	0.557	8.3754
10%	0.81	16.232	1.9173	0.583	7.6692
12%	0.81	12.06	1.49105	0.611	5.9642