Supporting Information

Structure and properties of naphthalene-diimide N-functionalized with stilbene A. Yu. Sosorev^{1,2*}, I. I. Ponomarev³, D. I. Dominskiy^{1,2}, K. A. Lyssenko³, O. D. Parashchuk¹, V. A. Trukhanov^{1,2}, V.G. Konstantinov^{1,2}, N.O. Dubinets⁴, D. Yu. Paraschuk^{1,2}.

1. Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia

2. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia

3. A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, Moscow, 119334, Russia

4. Photochemistry Center, FSRC Crystallography and Photonics, Russian Academy of Sciences, Novatorov Str. 7A-1, Moscow, 119421, Russia

*e-mail: <u>sosorev@physics.msu.ru</u>

S1. X-Ray diffraction analysis

Identification code	2240816
Diffractometer	Bruker D8 Quest with Photon
	III detector
Wavelength, Å	0.71072
Empirical formula	$C_{42}H_{26}N_2O_4$
Formula weight	622.65
Temperature, K	122
Crystal system	Monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	
a (Å)	25.526(6)
b (Å)	5.3037(18)
<i>c</i> (Å)	23.743(6)
b	116.390(9)
Volume	2879.4(14)
Z(Z')	4(0.5)
Density (calculated)	1.436
Absorption coefficient	9.71
F(000)	1296
q range for data collection	1.91 to 28.995
Reflections collected	13613
Independent reflections	3816 [R(int) = 0.0796]
Observed reflections	2703
Completeness to q_{max} , %	99.6
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1=0.0596, wR2=0.1479
R indices (all data)	R1 = 0.0829, wR2 = 0.1677
Largest diff. peak and hole	0.455 and -0.302 e.Å ⁻³

Fig. S1. Molecular structure of NDI-stilbene with labeled atoms and torsion angles for NDI core (a) and stilbene moiety (b).

S2. DFT calculations

Table S2. Energies of the selected molecular orbitals obtained at B3LYP/6-31G(d,p) and CAM-B3LYP/6-31G(d,p) levels.

Orbital	Energy, eV		
	CAM-B3LYP	B3LYP	
HOMO-10	-9.200	-7.502	
HOMO-9	-9.059	-7.361	
HOMO-8	-8.678	-7.108	
HOMO-7	-8.667	-7.091	
HOMO-6	-8.534	-6.980	
HOMO-5	-8.515	-6.939	
HOMO-4	-8.357	-6.857	
HOMO-3	-8.354	-6.795	
HOMO-2	-8.280	-6.789	
HOMO-1	-6.988	-5.573	
НОМО	-6.980	-5.567	
LUMO	-2.220	-3.260	
LUMO+1	-0.419	-1.633	
LUMO+2	-0.310	-1.467	
LUMO+3	-0.155	-1.382	
LUMO+4	0.063	-1.129	
LUMO+5	0.495	-0.873	
LUMO+6	1.162	-0.120	
LUMO+7	1.173	-0.109	
LUMO+8	1.317	0.0218	
LUMO+9	1.322	0.0272	

Fig. S2. Graphical representation of the dispersion energy in green on panel (a) and electrostatic interactions on panel (b) in NDI-stilbene crystals. The cylinders link molecular centroids, and their thickness is proportional to the magnitude of the energy; for clarity, pairwise energies with magnitudes less than 5 kJ mol⁻¹ are not shown. Details are given in Table S1.

Fig. S3. Distribution of interaction energies (absolute values) of NDI-stilbene and NDI-phenylene for a 3.8Å cluster. Each energy term was multiplied by the number of corresponding molecular pairs (see fig.3 in the main text).

Table S3. Different interaction energies of the molecular pairs for NDI-stilbene in kJ mol⁻¹: N is the number of pairs, R is the distance between the molecule centroids, E_{ele} is the classical electrostatic energy of interaction between monomer charge distributions, E_{pol} is the polarization energy estimated as a sum over

atoms with terms of the kind $-\frac{1}{2}\alpha|F|^2$, where the electric field F is computed at each atomic nucleus from the charge distribution of the other monomer and α are isotropic atomic polarizabilities, E_{dis} is Grimme's D2 dispersion correction summed over all intermolecular atom pairs, E_{rep} is the exchange–repulsion energy, obtained from the antisymmetric product of the monomer spin orbitals, [1] and E_{tot} is the total energy.

Ν	<i>R</i> (Å)	E _{ele}	E _{pol}	E _{dis}	E _{rep}	E _{tot}
4	13.00	-7.9	-3	-25.7	0	-32.9
2	31.67	-0.6	-0.3	-8	0	-7.8
2	5.3	-48.8	-9.9	-117.2	89.3	-105.8
4	21.11	-7.4	-2.5	-46.2	0	-50
2	31.67	-1.8	-0.2	-8.5	0	-9.4
2	11.87	-0.3	-4.9	-100.5	53.9	-58.2

S4. Hirshfeld surface maps

Fig. S4. Hirshfeld surfaces of NDI-stilbene mapped with normalized contact distance (first row), shape index S (second row), and ESP (third row). Red spots in (a) indicate intermolecular contacts closer than the sum of the van-der-Waals radii (close contacts), blue spots are referred

to longer contacts, and contacts around the sum of van-der-Waals radii (moderate contacts) are white.

Fig. S5. 2D finger print plot for NDI-stilbene with d_i and d_e ranging from 0.5 to 2.9 Å. For any given d_i and d_e pairs, the change in color shows the raise in occurrence: white color for no occurrence, then blue green and red for most frequent occurrence.

Fig. S6. Distribution of reciprocal intermolecular contacts for NDI-stilbene, arranged by molecules on the basis of Hirshfeld surface analysis. "Conducting" contacts are highlighted with the red dashed frames.

Fig. S7. ESP mapped on the Hirshfeld surfaces of adjacent molecules for the NDI-stilbene crystals. Color mapping and range for ESP correspond to Fig. 7c,d. More information in Ref. [2]. Color mapping and range for ESP correspond to Fig. S4.

S6. TDDFT calculations

Table S4. Lowest-energy transitions in single molecules of NDI-Stb obtained with B3LYP and CAM-B3LYP functionals.

#	B3LYP			CAM-B3LYP		
	Energy, eV	f	Orbitals	Energy, eV	f	Orbitals
1	1.951	0.0002	98% H – L	3.511	0.0009	80% H – L
2	1.956	0.0002	98% H-1 – L	3.523	0.0011	81% H-1 – L
3	3.140	0.0001	58% H-9 – L 31% H-7 - L	3.778	1.1551	89% H-2 - L
4	3.177	0.0639	48% H-4 – L 28% H-6 – L 21% H-5 - L	3.981	0	74% H-10 - L
5	3.185	0.0181	77% H-5 – L 10% H-6 – L 10% H-4 – L	4.106	0.0378	70% H-9 - L
6	3.275	0.0005	42% H-10 – L 34% H-8 - L	4.118	0.0096	60% H-11 – L
7	3.298	0.0000	89% H-2 – L	4.303	2.0502	23% H - L+1 25% H - L+2 18% H-1 - L+3
8	3.302	0.0001	89% H-3 – L	4.319	0.0328	56% H-14 - L
9	3.365	0.9200	56% H-6 – L 36% H-4 – L	4.335	0.0378	28% H-1 – L+2 15% H – L+2 15% H-1 – L+1
10	3.500	0.0009	58% H-7 – L 34% H-9 – L	4.473	0.0063	48% H-5 – L 23% H-6 – L
11	3.519	0.0006	51% H-8 – L 43% H-10 – L			
12	3.590	0.2068	75% H – L+1 17% H-1 – L+1			
13	3.600	0.0168	75% H-1 – L+1 17% H – L+1]		
14	3.688	0.0001	88% H-13 – L			
15	3.746	0.0217	84% H-11 – L			
16	3.887	0.0116	90% H-15 - L			
17	3.932	1.3270	54% H – L+2 40% H-1 – L+2			
18	3.950	0.0447	55% H-1 – L+2 43% H – L+2			
19	3.990	0.5946	64% H – L+3 26% H-1 – L+3	1		
20	4.005	0.0253	63% H-1 – L+3 26% H – L+3	1		

Fig. S8. Comparison of the experimental absorption data for solution (black line) and film (red line) with the ones calculated using B3LYP and CAM-B3LYP functionals.

#	Energy	f	Transition type (Inter- /intramolecular)
1	1.986	0.0000	intermolecular
2	1.989	0.0004	intramolecular
3	2.139	0.0002	mostly intramolecular
4	2.140	0.0002	mostly intramolecular
5	2.149	0.0005	mostly intermolecular
6	2.154	0.0004	mostly intermolecular
7	2.348	0.0000	mostly intermolecular
8	2.352	0.0000	mostly intermolecular
9	3.113	0.0102	mostly intermolecular
10	3.117	0.0011	mostly intramolecular

Table S5. Lowest-energy transitions in CT dimers of NDI-Stb obtained at B3LYP/6-31G(d,p) levels.

Fig. S9. (a) Energy profile for stilbene torsion with respect to NDI core obtained at CAM-B3LYP/6-31G(d,p) level. (b,c) Energies of the optical transitions for various torsional angles obtained with B3LYP (b) and CAM-B3LYP (c) density functionals. In both panels, 0° corresponds to the equilibrium position.

S7. Atomic force microscopy data

a)

b)

Fig. S10. Atomic force microscopy data for NDI-Stb film: typical scratch profile (a) and 2D surface profile (b). The film thickness was 291±15 nm, and the average roughness was 8.1 nm. The 2D image is a signature of heterogeneous film structure.

Fig. S11. (a) PL spectrum mass center as a function of temperature. (b) Dependence of PL intensity on temperature for NDI-Stb powder.

Fig. S12. Calculated Raman spectra for NDI-Stb.

Fig. S13. Calculated atomic displacements for the selected Raman modes. The frequencies are scaled by 0.965.

S10. HF Raman spectra

According to Fig. 5, the experimental Raman bands at 998, 1191, 1597, 1639 cm⁻¹ for NDI-stilbene are observed also for stilbene and hence involve vibrations of the latter moieties in the molecule studied. Indeed, our DFT calculations yield that the experimental band at 998 cm⁻¹ (labeled as S1) corresponds to vibrations of terminal (phenyl) ring of stilbene moiety (two modes, see Fig. S10a), band at 1191 cm⁻¹ (S2) — to scissor vibrations of the hydrogens of stilbene phenyl and phenylene rings (three modes, see Fig. S10b), band at 1597 cm⁻¹ (S3) — to stretching of phenyl/phenylene rings and vinylene group (Fig. S10e), and band at 1639 cm⁻¹ (S4) — to stretching vibration of the vinylene group (Fig. S10f). This assignment is in line with the literature data [3, 4]. Band S1 has the same frequency both in stilbene and NDI-stilbene, whereas band S3 is red-shifted with respect to stilbene. The relative intensities of bands S1 and S3 drop by ~3 and 1.5 times, correspondingly, with respect to those for S2 and S4. We tentatively assign this decrease in the relative intensity to intermolecular interactions present in NDI-Stb crystal, which hinders motion of terminal hydrogen and carbon atoms that contributes significantly to the suppressed modes. In contrast, the motion of the atoms of the phenylene rings (band S2) and vinyl groups (band S4) seem to be not affected by adjacent molecules.

The bands at 1418 cm⁻¹ and 1718 cm⁻¹ of NDI-Stb are assigned to motion of atoms of the NDI core, since almost the same frequencies of the Raman bands are observed in NDI-CHex (at 1425 and 1713 cm⁻¹, respectively), and labeled as bands N1 and N3. The band at 1606 cm⁻¹ observed in NDI-CHex (N2) probably manifests itself in the spectrum of NDI-stilbene as a shoulder of the band at 1597 cm⁻¹. The relative

intensity of band N1 in the NDI-Stb spectrum is lower than in the NDI-CHex spectrum, which can be assigned to stronger interaction of side carbon and hydrogen atoms lowering their vibrational amplitude.

S11. LF Raman spectra of the film

LF Raman spectrum is very sensitive to the intermolecular interactions and packing and can be used for investigation of the film crystallinity and polymorphism [Brillante]. For this reason, we performed LF Raman measurements for NDI-Stb film and compared the results obtained to those for the polycrystalline powder. The LF Raman spectra for the film is collated to that for crystalline powder in Fig. S. ... In contrast to the data for crystalline powder, LF spectra for the NDI-Stb film contain broad low-frequency band and does not show prominent characteristic peaks. This is frequently observed in amorphous samples, in line with our suggestion that the film has considerable amorphous areas.

Fig. S14. Low-frequency Raman spectra for NDI-Stb powder and film.

S12. Charge mobility calculations

Table S6. Charge transfer integral values for various directions in NDI-Stb.

dim	er	r, A	Vh,eV	Vl,eV
1		5.33	0.026	-0.064
2		5.33	0.027	-0.064
3		11.93	-0.004	-0.001
4		11.93	0.006	-0.002
5		31.83	0.011	-0.000
6		31.83	0.001	-0.000
7		31.83	-0.004	0.000

Fig. S15. HOMO (a,b) and LUMO (c,d) of molecular dimers corresponding to π -stack (a, c) and CT direction (b, d).

between stilbene and NDI moieties obtained at B3LYP/6-31G(d,p) level. In both panels, 0° corresponds to the equilibrium position.

S13. Charge mobility measurements

References

- 1. Mackenzie C. F., Spackman P. R., Jayatilaka D., Spackman M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCr. 2017. № 5. C. 575–7. https/dx.doi.og/10.1107/S205225251700848X.
- Edwards A. J., Mackenzie C. F., Spackman P. R., Jayatilaka D., Spackman M. A. Intermolecular interactions in molecular crystals: what's in a name? Faraday Discuss. 2017;203:93-112. https/dx.doi.og/10.1039/C7FD00072C.
- 3. Meic Z., Gusten H. Vibrational studies of trans-stilbenes I. Infrared and Raman spectra of transstilbene and deuterated stilbenes. Spectrochimica Acta 1978; 34A: 101-11.
- Vintaykin I. B., Golyak II. S., Golyak Ig. S., Esakov A.A., Morozov A.N., Tabalin S.E. The Use of Raman Spectroscopy for the Rapid Analysis of Chemical Compounds. Russian Journal of Physical Chemistry B, 2020, Vol. 14, No. 5, pp. 752–9. https://doi.org/10.1134/S1990793120050255