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Equation for surface barrier limitations.!

In the analysis of relative uptake and fractional coverage curves, the conventional approach involves
fitting a solution of Fick's second law for diffusion limitation (Equation 1 in the manuscript) or an
exponential curve for surface barrier limitation to the experimental data (Equation 1 below):

mt Q -1
m—=1—exp(—avt)= 1—exp(—‘[surft)

fee]

(1)

Where D and a represent the intracrystalline diffusivity and surface permeability, respectively. In this
analysis, the equivalent radius of a cube is assumed to be r = a/2, ensuring that the surface-to-volume
ratios Q/V for both the cube and the sphere (equal to 3/r) are the same.?

Details of the inversion numerical procedure

This part details the procedure used to obtained the distribution functions of diffusion time constant t7,
by using inversion methodology. In this case, 2D Infrared Inversion Spectroscopy (2D-IRIS) is based on the
inversion of the infrared spectra that consist of inverting the diffusion integral equation describing by the

following equation (Absorbance vs. time):
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K(t") is the functional
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Where f(u77 ) is the distribution function of diffusion time constant, and
dependence of the fractional uptake on time t by considering a bimodal distribution of spheres in the

system, expressed as:?
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To discretize equation 2, the A(U't)‘A(U'O), the functional ktry) and the distribution function
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floz ) are represented by matrixes which elements are given by:

Aij = A(Ul"tj) - A(Ui,O) i = 1,..., m ;j = 1,..., n

fri= f(Ui'T_kl)
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The q 7 k values are linearly spaced in the interval [“min, Fmax]:
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The left-hand member of the equation 2 is approximated by numerical quadrature, which consists in

approximating the integral by the weighted sum of the values of the function under integral:
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The weighting coefficients Wk are determined by the following expression:
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Discretization of equation 2, thus the results in the following system of linear algebraic equations:
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Denoting:
01 = Wiy, 8
The following matrix equation is obtained:
A=0f 9
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Denoting 4 and fi the vectors of absorbance values 4 and distribution function values /i at the

wavenumber Y, this linear system could be solved with respect to f by minimizing the residuals using a

least-squares method, i.e. by minimizing:
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However, because of the smoothness of the kernel ©, which varies slowly with 7 k , this is a numerically

ill-posed problem:3 the small experimental errors in A(vt) can lead to large changes in the optimum

solutions f. This problem is solved using a classical procedure known as Tikhonov regularization* which
consisting of enforcing the smoothness of the solution by adding a weighted constraint 25 to the objective
function to be minimized, where 4 is the regularization parameter and S a measure of the smoothness of
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the distribution function. However, the solution function f(uz”7) is that which minimize the functional:



Qreg[f] = QLS[f] + ﬂs[f] 11

Where ZisUf1 is the sum of squared residuals and AS[f] is the penalty function where 4 is the
regularization parameter (4 = 0) which controls the level of smoothing to be applied and S[f] is a measure
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of the smoothness of f. The S[f] is the norm of the second derivative of f with respect to 7 ~ was

calculated by the numerical quadrature:
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Where f(-1i = f0i =i = Fq+1i =0 This choice enforces the solution to be smoothed towards zero
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values atZmax @4 Tnin \hich is appropriate for a distribution function. However, with this choice, the

equation 12 can be expressed as a matrix equation:
SU1= Y 1SS, 13
i

Where S is a symmetric matrix defined by:
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By using equation (10) and (13), the equation (11) can be will be written:

Breglf1= Y, (OF = 4)"(OF = A) + 2f ST, 14



After the expansion of and dropping the constant term, the problem of minimizing @reg[f] amounts to

solve the quadratic programming (QP) problems:

Breglf1= £1(070 + 25)f, - 2476f, 15

With the non-negativity constraint, which can be solved by most of the numerical computational packages

under its standard form, i.e. minimize:
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With @ =20°0 + 245 5pg ¢ = 2Ai@subject to the constraint /i = 0,

For the present study, the numerical calculations were carried out with Python, especially Spectrochempy

library,® using the quadprog routine to solve the quadratic programming problem (Equation 16).°

Complementary of the results of the paper:
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Figure S 1. (A): L-curve plot for
determining the optimum choice of
regularization parameter A, (B, C and
D): 2D distribution function f(U'T_l)
obtained by inversion spectroscopy for
A=110"% (g) 1=54510"°" (¢),

and 1 =4.28110"" (p).
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Figure S2. (A): L-curve plot for
determining the optimum choice
of regularization parameter 4, (B,

C and D): 2D distribution function
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f(r™") obtained by inversion
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spectroscopy for 1=11 (B),
A=112810"" ()  and
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A=110 (D).
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Figure S3. L-curve plot for

determining the optimum choice of
regularization parameter A, (B,Cand
D): 1D distribution function f(V)
obtained by inversion gravimetric

uptake for A=110"%°
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Figure S5. (A and C): Fractional coverage (black points) and relative uptake (black points) of H-MFI
obtained by IR and gravimetric measurement, respectively , (B and D): Fractional coverage (black points)
and relative uptake (black points) of H-FAU obtained by the same methods. The red and blue cures
represent the fits of the diffusion-limited and surface-barrier-limited analytical expressions, respectively.
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