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Equation for surface barrier limitations.1

In the analysis of relative uptake and fractional coverage curves, the conventional approach involves 
fitting a solution of Fick's second law for diffusion limitation (Equation 1 in the manuscript) or an 
exponential curve for surface barrier limitation to the experimental data (Equation 1 below):

𝑚𝑡

𝑚∞ 
= 1 ‒ exp ( ‒ 𝛼

Ω
𝑉

𝑡) =  1 ‒ exp ( ‒ 𝜏 ‒ 1
𝑠𝑢𝑟𝑓 𝑡)

(1)

Where D and α represent the intracrystalline diffusivity and surface permeability, respectively. In this 
analysis, the equivalent radius of a cube is assumed to be r = a/2, ensuring that the surface-to-volume 
ratios Ω/V for both the cube and the sphere (equal to 3/r) are the same.1

Details of the inversion numerical procedure

This part details the procedure used to obtained the distribution functions of diffusion time constant τ-1, 

by using inversion methodology. In this case, 2D Infrared Inversion Spectroscopy (2D-IRIS) is based on the 

inversion of the infrared spectra that consist of inverting the diffusion integral equation describing by the 

following equation (Absorbance vs. time):   

A(υ,t) - 𝐴(𝜐,0) =
∞

∫
0

𝑓(𝜐,𝜏 ‒ 1)𝐾(𝑡,𝜏 ‒ 1
𝑘 )𝑑𝜏 ‒ 1
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Where  is the distribution function of diffusion time constant, and  is the functional 𝑓(, ‒ 1) 𝐾(𝑡,𝜏 ‒ 1
𝑖 )

dependence of the fractional uptake on time t by considering a bimodal distribution of spheres in the 

system, expressed as:2

𝐾(𝑡,𝜏 ‒ 1
𝑘 ) = 1 ‒

6

𝜋2

∞

∑
𝑛 = 1

1

𝑛2
exp ( ‒

𝑛2𝜋2

9

𝐷𝑒

𝐿2
𝑡) 3

With   
    𝜏 ‒ 1 =

𝐷𝑒

𝐿2

To discretize equation 2, the , the functional  and the distribution function 𝐴(,𝑡) ‒ 𝐴(,0) 𝐾(𝑡,𝜏 ‒ 1
𝑘 )

 are represented by matrixes which elements are given by: 𝑓(, ‒ 1)

𝐴𝑖𝑗 = 𝐴(𝑖,𝑡𝑗) ‒ 𝐴(𝑖,0)             𝑖 = 1,…, 𝑚 ; 𝑗 =  1,…, 𝑛

𝐾𝑗𝑘 = 𝐾(𝑡𝑗,𝜏
‒ 1
𝑘 )           𝑘 = 1,…, 𝑞 

 𝑓𝑘𝑖 = 𝑓(𝑖,
‒ 1
𝑘 )

The q  values are linearly spaced in the interval [ , ]: ‒ 1
𝑘  ‒ 1

𝑚𝑖𝑛   ‒ 1
𝑚𝑎𝑥

 ‒ 1
𝑘 =  ‒ 1

𝑚𝑖𝑛 +
𝑘 ‒ 1

∆ ‒ 1
4

With                                      
∆ ‒ 1 =

 ‒ 1
𝑚𝑎𝑥 ‒  ‒ 1

𝑚𝑖𝑛

𝑞 ‒ 1

The left-hand member of the equation 2 is approximated by numerical quadrature, which consists in 

approximating the integral by the weighted sum of the values of the function under integral:

+ ∞

∫
0

𝑞(𝑡𝑗,𝜏
‒ 1
𝑘 )(, ‒ 1)𝑑 ‒ 1 ≈

𝑞

∑
𝑘 = 1

𝑤𝑘𝑞𝑗𝑘𝑓𝑘𝑖
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The weighting coefficients  are determined by the following expression:𝑤𝑘

𝑤𝑘 = {∆ ‒ 1,  2 ≤ 𝑘 ≤ 𝑞 ‒ 1
∆ ‒ 1

2
,  𝑘 = 1,𝑞           � 6

Discretization of equation 2, thus the results in the following system of linear algebraic equations:

𝐴𝑖𝑗 =
𝑞

∑
𝑘 = 1

𝑤𝑘𝑞𝑗𝑘𝑓𝑘𝑖                 𝑖 = 1,…, 𝑚 ; 𝑗 =  1,…, 𝑛 𝑎𝑛𝑑 𝑘 = 1,…, 𝑞
7

Denoting: 

Θ𝑗𝑘 = 𝑤𝑘𝑞𝑗𝑘 8

The following matrix equation is obtained:

𝐴 = Θ𝑓 9

Denoting  and  the vectors of absorbance values  and distribution function values  at the 𝐴𝑖 𝑓𝑖 𝐴𝑖𝑗 𝑓𝑘𝑖

wavenumber , this linear system could be solved with respect to  by minimizing the residuals using a 𝑖 𝑓

least-squares method, i.e. by minimizing:

𝐿𝑆(𝑓) = ∑
𝑖

‖Θ𝑓𝑖 ‒ 𝐴𝑖‖2 = ∑
𝑖

(Θ𝑓𝑖 ‒ 𝐴𝑖)𝑇(Θ𝑓𝑖 ‒ 𝐴𝑖) 10

However, because of the smoothness of the kernel , which varies slowly with , this is a numerically Θ  ‒ 1
𝑘

ill-posed problem:3 the small experimental errors in  can lead to large changes in the optimum 𝐴(,𝑡)

solutions . This problem is solved using a classical procedure known as Tikhonov regularization4 which 𝑓

consisting of enforcing the smoothness of the solution by adding a weighted constraint  to the objective 𝑆

function to be minimized, where  is the regularization parameter and  a measure of the smoothness of  𝑆

the distribution function. However, the solution function  is that which minimize the functional: 𝑓(, ‒ 1)
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𝑟𝑒𝑔[𝑓] = 𝐿𝑆[𝑓] + 𝑆[𝑓] 11

Where  is the sum of squared residuals and  is the penalty function where  is the 𝐿𝑆[𝑓] 𝑆[𝑓] 

regularization parameter ( ) which controls the level of smoothing to be applied and  is a measure  ≥ 0 𝑆[𝑓]

of the smoothness of . The  is the norm of the second derivative of  with respect to  was 𝑓 𝑆[𝑓] 𝑓  ‒ 1

calculated by the numerical quadrature:

𝑆[𝑓] = ‖ ∂2𝑓

∂ ‒ 12‖2 ≈ ∑
𝑖

𝑞

∑
𝑘 = 1

(𝑓(𝑘 ‒ 1)𝑖 ‒ 2𝑓(𝑘 ‒ 1)𝑖 + 𝑓(𝑘 + 1)𝑖)
2 ∆ ‒ 1

(∆ ‒ 1)4

12

Where . This choice enforces the solution to be smoothed towards zero 𝑓( ‒ 1)𝑖 = 𝑓0𝑖 = 𝑓𝑞𝑖 = 𝑓(𝑞 + 1)𝑖 = 0

values at   which is appropriate for a distribution function. However, with this choice, the  ‒ 1
𝑚𝑎𝑥 𝑎𝑛𝑑  ‒ 1

𝑚𝑖𝑛

equation 12 can be expressed as a matrix equation:

𝑆[𝑓] = ∑
𝑖

𝑓𝑇
𝑖 𝑆𝑓𝑖

13

Where  is a symmetric matrix defined by:𝑆

𝑆 =
1

(∆ ‒ 1)3(
6 ‒ 4 1 0 … 0 0

‒ 4 6 ‒ 4 ‒ 1 … 0 0
1 ‒ 4 6 ‒ 4 … 0 0
0 1 ‒ 4 6 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ 0 0
0 0 0 0 … 6 ‒ 4
0 0 0 0 … ‒ 4 6

)
By using equation (10) and (13), the equation (11) can be will be written:

𝑟𝑒𝑔[𝑓] =  ∑
𝑖

(Θ𝑓𝑖 ‒ 𝐴𝑖)𝑇(Θ𝑓𝑖 ‒ 𝐴𝑖) + 𝑓𝑇
𝑖 𝑆𝑓𝑖

14
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After the expansion of and dropping the constant term, the problem of minimizing  amounts to 𝑟𝑒𝑔[𝑓]

solve the quadratic programming (QP) problems:

𝑟𝑒𝑔[𝑓] = 𝑓𝑇
𝑖 (Θ𝑇Θ + 𝑆)𝑓𝑖 ‒ 2𝐴𝑇

𝑖 Θ𝑓𝑖 15

With the non-negativity constraint, which can be solved by most of the numerical computational packages 

under its standard form, i.e. minimize:

𝑟𝑒𝑔[𝑓] =
1
2

𝑓𝑇
𝑖 𝑄𝑓𝑖 + 𝑐𝑇𝑓𝑖

16

With  and  subject to the constraint .𝑄 = 2Θ𝑇Θ + 2𝑆 𝑐𝑇 =‒ 2𝐴𝑇
𝑖 Θ 𝑓𝑖 ≥ 0

For the present study, the numerical calculations were carried out with Python, especially Spectrochempy 

library,5 using the quadprog routine to solve the quadratic programming problem (Equation 16).6 

Complementary of the results of the paper: 
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Figure S 1. (A): L-curve plot for 

determining the optimum choice of 

regularization parameter , (B, C and 𝜆

D): 2D distribution function  𝑓(𝜐,𝜏 ‒ 1)

obtained by inversion spectroscopy for 

 (B),  (C), 𝜆 = 1 10 ‒ 25 𝜆 = 5.45 10 ‒ 21

and  (D).𝜆 = 4.281 10 ‒ 13
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Figure S2. (A): L-curve plot for 

determining the optimum choice 

of regularization parameter , (B, 𝜆

C and D): 2D distribution function 

 obtained by inversion 𝑓(𝜐,𝜏 ‒ 1)

spectroscopy for  (B), 𝜆 = 1 10 ‒ 25

 (C), and 𝜆 = 1.128 10 ‒ 14

 (D).𝜆 = 110 ‒ 10
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Figure S3. L-curve plot for 

determining the optimum choice of 

regularization parameter , (B, C and 𝜆

D): 1D distribution function  𝑓(𝜐)

obtained by inversion gravimetric 

uptake for  (B), 𝜆 = 1 10 ‒ 25

 (C), and 𝜆 = 5.455 10 ‒ 21

 (D).𝜆 = 4.281 10 ‒ 13
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Figure S4. (A): L-curve plot for 

determining the optimum choice of 

regularization parameter , (B, C and 𝜆

D): 1D distribution function  𝑓(𝜐)

obtained by inversion gravimetric 

uptake for  (B), 𝜆 = 1 10 ‒ 25

 (C), and 𝜆 = 7.84 10 ‒ 18

 (D).𝜆 = 4.281 10 ‒ 13
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Figure S5. (A and C): Fractional coverage (black points) and relative uptake (black points) of H-MFI 
obtained by IR and gravimetric measurement, respectively , (B and D): Fractional coverage (black points) 
and relative uptake (black points) of H-FAU obtained by the same methods. The red and blue cures 
represent the fits of the diffusion-limited and surface-barrier-limited analytical expressions, respectively.
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