Magnetic Coupling Modulation in Meta-Nitroxide-Functionalized Isoalloxazine Magnets with Redox-Active Unit as Efficient Side-Modulator

Rabia Malik and Yuxiang Bu*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's

Republic of China

Supporting Information

Contents

- 1. Relevant Data for Describing the Ground States of All Diradicals and their Magnetic behaviors
- 2. Linear Relationship between the J/J' values of all diradicals calculated at the B3LYP/ M06-2X with 6-311+G(d,p) basis set.
- 3. Optimized Molecular Geometries with Corresponding Bond Lengths and Dihedral Angles
- 4. SOMO Plots and Spin Density Maps for All Diradicals
- 5. Spin Alteration Plots and Spin Density Distributions

1. Relevant Data for Describing the Grounds States for All Designed Diradicals, and Their Magnetic Behaviors

Table S1. All estimated energies (in a.u.) of the closed shell (CS) singlet, Broken-symmetry open-shell singlet (BS), and triplet (T) state, corresponding $\langle S^2 \rangle$ values, Magnetic Coupling Constants (*J*/cm⁻¹) for all diradicals calculated at (U)B3LYP/6-311+G (d, p) level.

Types	E _(CS) (au)	E _(T) (au) (<s<sup>2>)</s<sup>	E _(BS) (au) (<s<sup>2>)</s<sup>	J
				(cm ⁻¹)
1a	-958.8540130	-958.8635592(2.062)	-958.8608718(1.011)	561.3
1b	-960.1187428	-960.1215827(2.032)	-960.1269889(0.817)	-976.1
1c	-959.2306459	-959.2201800(2.032)	-959.2319023(0.427)	-1602.9
1d	-959.1898011	-959.2055203(2.103)	-959.2034475(0.903)	379.1
1e	-959.4516180	-959.4281143(2.079)	-959.4516180(0.000)	-
1b(OH)	-1035.3645946	-1035.3677092(2.031)	-1035.3729327(0.824)	-949.8
1b(NO2)	-1164.6767663	-1164.6818318(2.034)	-1164.6859589(0.839)	-757.9
1b(NH2)	-1015.4927989	-1015.4962867(2.032)	-1015.5010931(0.830)	-877.6

Table S2. The energies (in a.u.) of the broken-symmetry (BS) open-shell singlet and triplet (T) state, corresponding $\langle S^2 \rangle$ values, intramolecular magnetic coupling constants (J'/cm^{-1}) for all diradicals calculated at the (U)M06-2X/6-311+G(d,p) level.

Types	E _(T) (au) (<s<sup>2>)</s<sup>	E _(BS) (au) (<s<sup>2>)</s<sup>	$J' ({\rm cm}^{-1})$
1a	-958.499891(2.073)	-958.4973545(1.029)	533.2
1b	-959.753139(2.046)	-959.7563254(0.966)	-647.5
1c	-958.8483421(2.059)	-958.8568787(0.677)	-1355.7
1d	-958.8307407(2.153)	-958.8272419(1.014)	674.2
1e	-959.0439509(2.157)	-959.0726533(0.000)	-
1b(OH)	-1034.9770312(2.046)	-1034.9800542(0.969)	-616.0
1b(NO ₂)	-1164.2384853(2.046)	-1164.2411165(0.972)	-537.7
1b(NH ₂)	-1015.1083185(2.046)	-1015.1106948(0.975)	-486.9

Figure S1. A linear correlation between the *J* values of selected all diradicals calculated at the B3LYP/6-311+G(d,p) level and those (*J'* values) calculated at the M06-2X/6-311+G(d,p) level.

Table S3. All calculated energies of open-shell singlet (BS) and triplet (T) states, along with $\langle S^2 \rangle$ values, Magnetic Coupling Constants (*J*/cm⁻¹) for all diradicals as well as singlet-triplet energy gaps (ΔE_{ST}) at the (U)B3LYP/6-311+G (d, p) level.

Types	$E_{(T)}$ (<s<sup>2>)</s<sup>	$E_{(BS)}$ (<s<sup>2>)</s<sup>	J	ΔE_{ST}
	(au)	(au)	(cm ⁻¹)	(kcal/mol)
1a	-958.8635592(2.062)	-958.8608718(1.011)	561.3	3.30
1b	-960.1215827(2.032)	-960.1269889(0.817)	-976.1	-5.67
1c	-959.2201800(2.032)	-959.2319023(0.427)	-1602.9	-9.31
1d	-959.2055203(2.103)	-959.2034475(0.903)	379.1	2.27
1b(OH)	-1035.3677092(2.031)	-1035.3729327(0.824	-949.8	-5.51
1b(NO ₂)	-1164.6818318(2.034)	-1164.6859589(0.839)	-757.9	-4.40
1b(NH ₂)	-1015.4962867(2.032)	-1015.5010931(0.830)	-877.6	-5.09

Types	¹ Es (au)	² E _s (au)	ΔE_{SS} (eV)	$\Delta \mathbf{E}_{ST}$ (kcal/mol)
1a	-0.27067	-0.25084	0.54	3.30
1b	-0.23635	-0.19035	1.25	-5.67
1c	-0.43986	-0.38946	1.37	-9.31
1d	-0.41615	-0.38425	0.86	2.27
1b(OH)	-0.23573	-0.18813	1.29	-5.51
1b(NO ₂)	-0.25381	-0.21023	1.18	-4.40
1b(NH ₂)	-0.23279	-0.18894	1.19	-5.09

Table S4. Two SOMO Energies (E_s , in au) of the Triplet States, SOMO-SOMO Energy Gaps (ΔE_{ss} , in eV), Calculated at the (U)B3LYP/6-311+G (d, p) level

2. Optimized Molecular Geometries with Corresponding Bond Lengths

Figure S2. The ball-and-stick models for the optimized geometries of all diradicals with the calculated magnetic exchange spin coupling constants (J/cm^{-1}). White spheres denote H atoms, gray, C atoms, blue, N atoms and red, O atoms.

3. SOMO Plots and Spin Density Maps for All Diradicals

Figure S3. The SOMOs (isovalue = 0.02) and spin density maps (isovalue = 0.0004) for the T and BS states of all diradicals at the (U)B3LYP/6-311+G (d, p) level.

4. Spin Alternation Plots and Spin Density Distributions

Figure S4. Spin density distributions (the left column, numbers) and scheme of spin alternation (the right column, up and down arrows) for all diradicals.