## **Supplementary Information For**

## LC<sub>567</sub>: A new 2D semimetallic carbon allotrope as a promising anode material for lithium-ion batteries



Figure S1. The total energy per atom for graphene allotrope.



Figure S2. The change of total energy and structure of LC<sub>567</sub> with time at 1000 K and 1500 K.



**Figure S3**. (a) Young's modulus in all directions of  $LC_{567}$ ; (b)  $LC_{567}$  Poisson's ratio in all directions.



Figure S4. The flowchart of LC<sub>567</sub> composed of azulene and perchloroethylene.

The  $LC_{567}$  can be made up of dehydrogenated azulene molecules and dechlorinated perchloroethylene molecules, here we propose a possible synthesis routine, as shown above. Firstly, azulene molecules and perchloroethylene molecules need to be arranged in an appropriate way; secondly, by fusing well-arranged molecules through H-Cl-zipping, C-C coupling are coupled between C-Cl and C-H moiety which are linked together through a self-assembly process; finally,  $LC_{567}$  is obtained. By calculating the energy before and after the reaction, the synthesis process is an exothermic reaction, which proves the feasibility of the reaction.



Figure S5. (a) Possible lithium adsorption sites on  $LC_{567}$  (top view); (b) Density of states for lithium-ion adsorption at different sites.



Figure S6. (a)- (d) The structures before and after adsorption are made into devices.



Figure S7 The adsorption energy as a function of Li atoms.



Figure S8. Structures of  $LC_{567}$  with various Li concentrations. In each partial, left show the top view and right side view.



Figure S9. Structures of two- and three-layer LC<sub>567</sub> with Li concentrations.

We calculate the adsorption energy of the maximum concentration for Li ions in two- and three-layer  $LC_{567}$ , and the energy are separately -0.885eV and -1.338eV, indicating the feasibility of Li ions adsorption for two-layer and three-layer  $LC_{567}$ . For a three-layer structure, the

maximum theoretical capacity is calculated as 496.9 mAhg<sup>-1</sup>, which is slightly fewer than the single-sided lithium storage in monolayers (558 mAhg<sup>-1</sup>).

Type 1:



Figure S10. Adsorption of lithium atoms by two types of two-layer stacking structures and their bulk structures.

|                       | a (Å)  | <i>b</i> (Å) | Lattice var | riation (%) | Area variation (%) |  |
|-----------------------|--------|--------------|-------------|-------------|--------------------|--|
| С                     | 10.658 | 12.211       |             |             |                    |  |
| Li <sub>0.041</sub> C | 10.661 | 12.211       | 0.028       | -           | 0.028              |  |
| Li <sub>0.083</sub> C | 10.665 | 12.213       | 0.065       | 0.016       | 0.082              |  |
| Li <sub>0.125</sub> C | 10.684 | 12.213       | 0.244       | 0.016       | 0.260              |  |
| Li <sub>0.167</sub> C | 10.732 | 12.214       | 0.694       | 0.025       | 0.719              |  |
| Li <sub>0.208</sub> C | 10.733 | 12.224       | 0.704       | 0.106       | 0.811              |  |
| Li <sub>0.250</sub> C | 10.750 | 12.224       | 0.863       | 0.106       | 0.971              |  |

Table S1. The calculated lattice constant (a, b, in Å), lattice change of LC<sub>567</sub> monolayer

Table S2. Structural information of various carbon allotropes and diffusion barriers of lithium

| Name                       | Composition          | NEB (eV) |          |          |          |          |  |
|----------------------------|----------------------|----------|----------|----------|----------|----------|--|
|                            |                      | 5-5      | 5-6(6-5) | 5-7(7-5) | 7-7      | 6-7(7-6) |  |
| LC <sub>567</sub>          | 5-6-7 membered rings | 0.18     | 0.22     | 0.28     | 0.31     |          |  |
| MC <sub>567</sub>          | 5-6-7 membered rings |          | 0.26     | 0.31     |          | 0.33     |  |
| NC <sub>567</sub>          | 5-6-7 membered rings |          | 0.26     | 0.29     |          | 0.32     |  |
| ψ-graphene <sup>[1]</sup>  | 5-6-7 membered rings |          | 0.26     | 0.28     | 0.30     | 0.31     |  |
|                            |                      | 5-5      | 5-8(8-5) | 5-6(6-5) | 6-8(8-6) |          |  |
| HC <sub>568</sub>          | 5-6-8 membered rings | 0.19     | 0.24     |          | 0.32     |          |  |
|                            |                      | 5-5      | 5-8(8-5) | 8-8      |          |          |  |
| Popgraphene <sup>[2]</sup> | 5-8 membered rings   | 0.24     | 0.36     | 0.31     |          |          |  |
| OPG_L <sup>[3]</sup>       | 5-8 membered rings   | 0.22     | 0.27     | 0.29     |          |          |  |
| OPG_Z <sup>[3]</sup>       | 5-8 membered rings   | 0.14     | 0.26     | 0.26     |          |          |  |

ions on their surfaces.

without and with adsorbed Li atoms.



[1] Li, Xiaoyin, Qian Wang, and Puru Jena.  $\psi$ -Graphene: a new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries. The journal of physical chemistry letters 8.14 (2017): 3234-3241.

 [2] Wang, Shuai wei, et al. Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. Journal of Materials Chemistry A 6.16 (2018): 6815-6821.

[3] Gao, Peng fei, et al. OPGs: promising anode materials with high specific capacity and rate capability for Li/Na ion batteries. Nanoscale 10.37 (2018): 17942-17948.