Supplementary information

Strain-induced phase transitions and high carrier mobility in two-dimensional Janus MGeSN₂ (M = Ti, Zr, and Hf) structures: First-principles calculations

Le C. Nhan¹, Nguyen T. Hiep^{2,3}, Cuong Q. Nguyen^{2,3}, Nguyen N. Hieu^{2,3†}

¹Faculty of Environmental Science, Saigon University, 273 An Duong Vuong Street,

Ward 3, District 5, Ho Chi Minh City, Viet Nam

²Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.

³Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam.

[†] Corresponding author. Email: nguyenngochieu1@dtu.edu.vn

Fig. S1. AIMD simulations for temperature fluctuations to simulation time at 300 K of strained MGeSN₂ monolayers at $\varepsilon_b = +9\%$ (a) and $\varepsilon_b = -9\%$ (b).

Fig. S2. Band structures of (a) TiGeSN₂, (b) ZrGeSN₂, and (c) HfGeSN₂ under a uniaxial strain along the *x*-axis ε_x .

Fig. S3. Band structures of (a) TiGeSN₂, (b) ZrGeSN₂, and (c) HfGeSN₂ under a uniaxial strain along the *y*-axis ε_y .