Supplementary Material

Doubly ionized OCS bond rearrangement upon fragmentation - experiment and theory

Mahmoud Jarraya,^{a,b,c} Måns Wallner,^d Saida Ben Yaghlane,^b Emelie Olsson,^d Veronica Ideböhn,^d Richard J. Squibb,^d Jérôme Palaudoux,^c Gunnar Nyman,^e Muneerah Mogren Al-Mogren,^f John H. D. Eland,^{g,*} Raimund Feifel,^{d,*} Majdi Hochlaf ^{a,*}

^a Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes, 77454, Champs Sur Marne, France

^bLSAMA, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie

^cLCP-MR, Sorbonne Université – UMR7614, 75231 Paris Cedex 05, France

^d Department of Physics, University of Gothenburg, 412 58 Gothenburg, Sweden

^e Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 405 30, Sweden

^f Department of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

^g Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, OX1 3QZ, UK

	T	1	1	r	1	I	1	1	T
	\mathbf{R}_1	\mathbf{R}_2	θ	ω_1	ω ₂	ω3	ω4	ZPE	E
$O(^{3}P_{g})$									-74.99493065
O^+ (⁴ S _u)									-74.49819755
C (³ P _g)									-37.78663526
$C^{+}(^{2}P_{u})$									-37.37490089
$C^{2+}(^{1}S_{g})$									-36.48289644
S (³ P _g)									-397.6682818
$S^{+}(^{4}S_{u})$									-397.2911828
$S^{2+}({}^{3}P_{g})$									-396.4330943
$CO(X^1\Sigma^+)$	2.139			2159.33				1079.65	-113.1903709
$CO^+(X^2\Sigma^+)$	2.113			2210.47				1105.22	-112.6761715
СО ²⁺ (Х ³ П)	2.353			1461.56				730.77	-111.6752489
$CS(X^1\Sigma^+)$	2.913			1279.47				639.724	-435.7239201
$CS^+(X^2\Sigma^+)$	2.830			1376.32				688.148	-435.3077480
$CS^{2+}(X^{3}\Pi)$	3.034			1035.02				517.5	-434.5201976
SO $(X^3\Sigma^-)$	2.808			1154.97				577.475	-472.8595007
$SO^+(X^2\Pi)$	2.701			1321.98				660.982	-472.4812456
$SO^{2+}(X^{1}\Sigma^{+})$	2.627			1428.75				714.366	-471.7691414
OCS $(X^1\Sigma^+)$	2.190	2.961	180.0	2088.52	872.54	523.75	523.75	2004.24	-510.9766309
$OCS^{2+}(X^{3}\Sigma^{-})$	2.112	3.388	180.0	2239.98	527.17	326.61	326.61	1710.16	-509.8749955
$OCS^{2+}(a^1\Delta)$	2.120	3.325	180.0	2150.31	530.60	362.35	306.82	1675.02	-509.8227512
$COS^{2+}(X^{3}\Sigma^{-})$	2.288	3.172	180.0	1622.74	584.01	137.56	137.56	1240.92	-509.8030516
$\cos^{2+}(a^1\Delta)$	2.304	3.125	180.0	1540.63	605.60	151.45	149.83	1223.74	-509.7515190
$\cos^{2+}(1^{1}A'')$	2.576	3.734	53.92	1054.17	709.66	328.97		1046.39	-509.7299407
$\cos^{2+}(1^{5}\Pi)$	2.369	3.040	180.0	1599.40	702.01	131.45	131.21	1216.29	-509.6369265

Table S1: Optimized structural parameters (R_i in bohr and θ in degree), harmonic frequencies (ω_i , in cm⁻¹) and zero point vibrational energies (ZPE, in cm⁻¹) and total energies (E, in Hartree) of the molecular species involved in this work as computed at the RCCSD(T)/aug-cc-pV(Q+d)Z level of theory.

Table S2: Dissociation energies (E, eV) of COS^{2+} leading to $[SO+C]^{2+}$ fragments laying in the 30 - 40 eV with respect to OCS (X¹ Σ^+). For SO⁺ and SO²⁺, we used the excitation energies from Refs. ^{1,2}. We also used the data in Table S1 and from Ref. ³.

	Dissociation channel	Е
L ₁	$SO^{+}(X^{2}\Pi) + C^{+}(^{2}P_{u})$	30.396
L ₂	$SO^{+}(a^{4}\Pi) + C^{+}(^{2}P_{u})$	33.528
L ₃	$SO^{+}(A^{2}\Pi) + C^{+}(^{2}P_{u})$	34.205
L_4	$SO^{+}(1^{2}\phi) + C^{+}(^{2}P_{u})$	35.094
L ₅	$SO^{+}(b^{4}\Sigma^{-}) + C^{+}(^{2}P_{u})$	35.117
L ₆	$SO^{+}(X^{2}\Pi) + C^{+}(^{4}P_{g})$	35.728
L ₇	$SO^{+}(C^{2}\Pi) + C^{+}(^{2}P_{u})$	36.044
L_8	$SO^{+}(2^{4}\Pi) + C^{+}(^{2}P_{u})$	36.346
L ₉	$SO^{+}(1^{2}\Delta) + C^{+}(^{2}P_{u})$	36.394
L ₁₀	$SO^{+}(b^{2}\Sigma^{-}) + C^{+}(^{2}P_{u})$	36.569
L ₁₁	$SO^{+}(1^{4}\Delta) + C^{+}(^{2}P_{u})$	36.963
L ₁₂	$SO^{+}(2^{2}\Sigma^{+}) + C^{+}(^{2}P_{u})$	36.996
L ₁₃	$SO^{+}(4^{2}\Pi) + C^{+}(^{2}P_{u})$	37.347
L ₁₄	$\mathrm{SO}^{2+}(\mathrm{X}^{1}\Sigma^{+}) + \mathrm{C}(^{3}\mathrm{P}_{\mathrm{g}})$	38.546
L ₁₅	$SO^{+}(a^{4}\Pi) + C^{+}({}^{4}P_{g})$	38.860
L ₁₆	$SO^{+}(A^{2}\Pi) + C^{+}(^{4}P_{g})$	39.537
L ₁₇	$SO^{+}(X^{2}\Pi) + C^{+}(^{2}D_{g})$	39.686
L ₁₈	$\mathrm{SO}^{2+}(\mathrm{X}^{1}\Sigma^{+}) + \mathrm{C}(^{1}\mathrm{D}_{\mathrm{g}})$	39.810

Table S3: Dissociation energies (E, eV) of COS^{2+} leading to $[CO+S]^{2+}$ fragments laying in the 27 - 40 eV with respect to OCS (X¹ Σ^+). For CO⁺, we used the excitation energies from Ref. ⁴. We also used the data in Table S1 and from Ref. ³.

	Dissociation channel	Е
L ₁	$CO^{+}(X^{2}\Sigma^{+}) + S^{+}(^{4}S_{u})$	27.425
L ₂	$CO^{+}(X^{2}\Sigma^{+}) + S^{+}(^{2}D_{u})$	29.267
L ₃	$CO^{+}(A^{2}\Pi) + S^{+}(^{4}S_{u})$	29.987
L ₄	$CO^{+}(X^{2}\Sigma^{+}) + S^{+}(^{2}P_{u})$	30.466
L ₅	$CO^{+}(A^{2}\Pi) + S^{+}(^{2}D_{u})$	31.829
L ₆	$CO^{+}(A^{2}\Pi) + S^{+}(^{2}P_{u})$	33.028
L ₇	$CO^{+}(B^{2}\Sigma^{+}) + S^{+}(^{4}S_{u})$	33.146
L ₈	$CO^{+}(a^{4}\Sigma^{+}) + S^{+}(^{4}S_{u})$	33.214
L9	$CO^{+}(1^{4}\Delta) + S^{+}(^{4}S_{u})$	34.194
L ₁₀	$CO^{+}(b^{4}\Pi) + S^{+}(^{4}S_{u})$	34.517
L ₁₁	$CO^{+}(1^{4}\Sigma^{-}) + S^{+}(^{4}S_{u})$	34.754
L ₁₂	$CO^{+}(B^{2}\Sigma^{+}) + S^{+}(^{2}D_{u})$	34.988
L ₁₃	$CO^{+}(a^{4}\Sigma^{+}) + S^{+}(^{2}D_{u})$	35.056
L ₁₄	$\mathrm{CO}^{+}\left(\mathrm{C}^{2}\Delta\right)+\mathrm{S}^{+}\left(^{4}\mathrm{S}_{\mathrm{u}}\right)$	35.239
L ₁₅	$CO^{+}(D^{2}\Pi) + S^{+}(^{4}S_{u})$	35.890
L ₁₆	$CO^{+}(1^{4}\Delta) + S^{+}(^{2}D_{u})$	36.036
L ₁₇	$CO^{+}(B^{2}\Sigma^{+}) + S^{+}(^{2}P_{u})$	36.187
L ₁₈	$CO^{+} (a^{4}\Sigma^{+}) + S^{+} (^{2}P_{u})$	36.255
L19	$CO^{+}(b^{4}\Pi) + S^{+}(^{2}D_{u})$	36.359
L ₂₀	$CO^{+}(1^{4}\Sigma^{-}) + S^{+}(^{2}D_{u})$	36.596
L ₂₁	$CO(X^{1}\Sigma^{+}) + S^{2+}(^{3}P_{g})$	36.780
L ₂₂	$\mathrm{CO}^{+}\left(\mathrm{C}^{2}\Delta\right)+\mathrm{S}^{+}\left(^{2}\mathrm{D}_{\mathrm{u}}\right)$	37.081
L ₂₃	$CO^{+}(1^{4}\Delta) + S^{+}(^{2}P_{u})$	37.235
L ₂₄	$\mathrm{CO}^{+}\left(\mathrm{X}^{2}\mathrm{\Sigma}^{+}\right)+\mathrm{S}^{+}\left(^{4}\mathrm{P}_{\mathrm{g}}\right)$	37.269
L ₂₅	$CO^{+}(b^{4}\Pi) + S^{+}(^{2}P_{u})$	37.558
L ₂₆	$CO^{+}(D^{2}\Pi) + S^{+}(^{2}D_{u})$	37.732
L ₂₇	$CO^{+}(1^{4}\Sigma^{-}) + S^{+}(^{2}P_{u})$	37.795
L ₂₈	CO $(X^{1}\Sigma^{+}) + S^{2+} (^{1}D_{g})$	38.184
L ₂₉	$\mathrm{CO}^{+}\left(\mathrm{C}^{2}\Delta\right)+\mathrm{S}^{+}\left(^{2}\mathrm{P}_{\mathrm{u}}\right)$	38.280

L ₃₀	$CO^{+}(D^{2}\Pi) + S^{+}(^{2}P_{u})$	38.931
L ₃₁	$CO^{+}(X^{2}\Sigma^{+}) + S^{+}(^{2}D_{g})$	39.562
L ₃₂	$CO^{+}(A^{2}\Pi) + S^{+}(^{4}P_{g})$	39.831

Table S4: MRCI/aug-cc-pV(Q+d)Z double ionization energies (E, eV) of COS ²⁺ quoted with respect to the
energy at the equilibrium geometry of OCS ($X^{1}\Sigma^{+}$) (i.e. OCS angle = 180°, CO distance = 2.190 Bohr and
CS distance = 2.961 Bohr).

Electronic state	Е
$X^3\Sigma^-$	32.248
a ¹ Δ	33.407
$b^1\Sigma^+$	34.260
1 ³ П	35.340
$1^{1}\Pi$	35.634
1 ⁵ П	36.724
2 ³ Π	37.514
3 ³ П	38.255
1 ⁵ Σ ⁻	39.132
$2^{1}\Pi$	39.114
1 ¹ Σ-	39.232
$2^{1}\Pi$	39.275
2 ³ Σ-	39.535
$1^{3}\Sigma^{+}$	39.371
1 ³ Δ	39.510
$2^{1}\Delta$	39.755
$2^{3}\Sigma^{+}$	40.458

Figure S1: Arrival-time difference (PIPICO) peaks for $CO^+ + S^+$ ion pairs coincident with photoelectron pairs signaling double ionization in the energy ranges shown. The peaks have been artificially symmetrized about the time difference for thermal ions, using the later half of each raw PIPICO peak.

Figure S2: OCS²⁺ and COS²⁺ optimized structures and definition of their internal coordinates used for Table S1.

Figure S3: MRCI/aug-cc-pV(Q+d)Z potential energy curves of the singlet, triplet and quintet electronic states of COS^{2+} along the along the SO (R₂) coordinate. The remaining internal coordinates are kept fixed at their values in the $COS^{2+}(X^{3}\Sigma^{-})$ state i.e., R₁= 2.288 Bohr and θ = 180°.

Figure S4: MRCI/aug-cc-pV(Q+d)Z potential energy curves of the singlet, triplet and quintet electronic states of COS^{2+} along the along the CO (R₁) coordinate. The remaining internal coordinates are kept fixed at their values in the COS^{2+} ($X^{3}\Sigma^{-}$) state (i.e., R₂= 3.172 Bohr and θ = 180°).

References

- ¹ A. Ben Houria, Z. Ben Lakhdar, M. Hochlaf, F. Kemp, and I. R. McNab. J. Chem. Phys. 122, 054303 (2005). ² A. Ben Houria, Z. Ben Lakhdar, and M. Hochlaf. J. Chem. Phys. 124, 054313 (2006).

- ³ <u>https://webbook.nist.gov</u>
 ⁴ D. Shi, W. Li, J. Sun, Z. Zhu, Y. Liu. Comput. Theor. Chem. 978, 126 (2011).