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S1 Calculation Details
The total X-ray scattering structure function (S(q))1–6 was computed using

S(q) =
ρ0 ∑

n
i=1 ∑

n
j=1 xix j fi(q) f j(q)

∫ L/2
0 4πr2[gi j(r)−1] sinqr

qr ω(r)dr

[∑n
i=1 xi fi(q)]2

, (S1)

where ρ0 denotes the total number density given by Natom/⟨V ⟩. n is the number of different i and j type of atoms with mole fractions
xi and x j, respectively. The X-ray atomic form factors for calculating S(q) for i and j atom types are represented by fi(q) and f j(q),
respectively. gi j(r) denotes the radial distribution function (RDF) between i and j atom types considering both intermolecular and
intramolecular atoms. The box-length is L. ω(r) is the Lorch window function, formulated as ω(r) = sin(2πr/L)/(2πr/L)7,8, which
reduces the impact of finite truncation of r.

The total neutron scattering structure function (SN(q))9 was computed using

SN(q) =
ρ0 ∑

n
i=1 ∑

n
j=1 xix jbib j

∫ L/2
0 4πr2[gi j(r)−1] sinqr

qr ω(r)dr

∑
n
i=1 xib2

i
, (S2)

where bi and b j are the neutron scattering lengths of different i and j type of atoms.
RDF10 highlighting real space correlations between various atomic pairs, was computed as

gi j(r) =

〈
∑

Ni
i=1 ∑

N j
j=1, j ̸=i δ (r− ri j)

〉
ρ jNi

. (S3)

Integration of gi j(r) over distance r′ gives cumulative coordination number of j type species around i type species, given as

ni j(r′) = 4πρ j

∫ r′

0
gi j(r)r2dr, (S4)

where, the bulk number density of the species of type j is ρ j.
Radial angular distribution function (gi j(r,θ))11,12 was computed using

gi j(r,θ) =

〈
∑

ND
i=1 ∑

NA
j ̸=i δ (r− ri j)δ (θ −θi j)

〉
NAρD

, (S5)

where θi j is hydrogen-donor-acceptor angle (̸ HDA). The number of acceptor and donor molecules is represented by NA and ND,
respectively. ρD is the bulk number density of the donor molecules.

Hydrogen-bond auto-correlation function (C(t))13–15 was computed using

C(t) = ⟨h(0)h(t)⟩/⟨h(0)2⟩, (S6)

where the hydrogen-bond population is represented by the variable h(t), which has a value of 1 if the hydrogen bond was present at
time t = 0 and is still present at time t; in other cases, it has a value of 0. We found that a combination of an exponential function and
a stretched exponential function was required to obtain the best fit for the calculated C(t), which subsequently enabled us to correctly
compute the average hydrogen-bond lifetime as
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C(t) = ae−t/τ1 +(1−a)e−(t/τ2)
b
, (S7)

where, τ1 and τ2 represent the time constants having relaxation amplitudes of a and 1−a, respectively. The stretching exponent is
represented by b whose value is 0 ≤ b ≤ 1. More dynamic heterogeneity is indicated by a larger deviation in b from unity.16 Integrating
Eq. S7 yields the average lifetime, given as

⟨τ⟩= aτ1 +
(1−a)τ2

b
Γ(

1
b
), (S8)

where Γ corresponds to the gamma function.
Using MSD,10 we computed the self-diffusion coefficients (Ds

j) of the thymol (THY) and coumarin (COU) molecules present in the
HDESs, given as

Ds
j =

1
6

lim
t→∞

d⟨|⃗r j(t) − r⃗ j(0)|2⟩
dt

, (S9)

where the coordinates of jth type molecule in vector form at time t is given by r⃗ j(t). To confirm that the MSD reaches a diffusive
regime, we computed the β (t) function as

β (t) =
dlog⟨|⃗r j(t) − r⃗ j(0)|2⟩

dlog t
(S10)

The function β (t) approaches unity when MSD reaches the diffusive region.
The normalized velocity auto-correlation function (VACF)10 for molecule of type i was computed using

VACF = ⟨vi(0)vi(t)⟩i,t0/⟨vi(0)2⟩i,t0 , (S11)

where vi is the center-of-mass velocity of the molecule of type i and ⟨⟩i,t0 depicts the ensemble average over the total number of
molecule of type i and different time origins t0.
The non-Gaussian parameter (α2(t))17,18 gives the deviation of displacements of of thymol and coumarin molecules from Gaussian
behavior described as

α2(t) =

3⟨
N
∑

j=1
[⃗r j(t) − r⃗ j(0)]4⟩

5⟨
N
∑

j=1
[⃗r j(t) − r⃗ j(0)]2⟩2

−1. (S12)

In cases where α2(t) is more than 0, we found evidence of dynamic heterogeneity in the displacement of the thymol and coumarin
molecules present in the HDESs.19,20

The self van Hove correlation function (Gs(r, t))21 for thymol and coumarin molecules present in the HDESs is given as

Gs(r, t) =
1
N
⟨

N

∑
j=1

δ (r− (|⃗r j(t) − r⃗ j(0)|))⟩, (S13)

where the Dirac-delta function is denoted by δ . If at time t = 0 the particle is at the origin, then Gs(r, t) describes the probability of
locating that particle at distance r at a later time t. If the particle’s displacement is entirely diffusive, then Gs(r, t) is equivalent to ideal
Gaussian distribution (Gideal

s (r, t)),20,22 stated as

Gideal
s (r, t) = [

3
2π⟨∆r2(t)⟩

]3/2 e−3r2/2⟨∆r2(t)⟩, (S14)

where, ⟨∆r2(t)⟩= 1
N ⟨

N
∑

j=1
|⃗r j(t) − r⃗ j(0)|2⟩.

Table S1 Self-diffusion coefficients (Ds (10−7 cm2 s−1)) (defined by Eq. S9) calculated from center-of-mass MSD for thymol and coumarin in HDES
systems.

HDES thymol coumarin
thymol:coumarin (1:1) 4.24 ± 0.0001 4.51 ± 0.0002
thymol:coumarin (2:1) 6.18 ± 0.0001 6.00 ± 0.0002

S2



(a) (b)

Figure S1 Equilibrated simulation boxes of thymol-coumarin based HDESs at molar ratios (a) 1:1 and (b) 2:1 of thymol and coumarin components.
The red and yellow colors depict the thymol and coumarin components of the HDESs, respectively.
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Figure S2 Computed total neutron scattering structure function, SN(q)s of thymol:coumarin HDES at 1:1 and 2:1 molar ratios, depicted in (a) wide
and (b) small q regions. The SN(q)s are shifted vertically for clarity.
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Figure S3 Simulated species-wise partial X-ray scattering structure functions, S(q)s, of thymol-coumarin HDES at two mole ratios of the components.
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Figure S4 Probability of the number of hydrogen bonds (per thymol donor molecules) corresponding to (a) O1COU-HOTHY and (b) OHTHY-HOTHY hy-
drogen bonding interactions present in thymol:coumarin HDESs at molar ratios 1:1 and 2:1. Here, the carbonyl oxygen of coumarin is represented by
O1COU. OHTHY and HOTHY correspond to hydroxyl oxygen and hydroxyl hydrogen of thymol, respectively.
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Figure S5 MSDs of (a) thymol and (b) coumarin molecules in thymol:coumarin HDESs at molar ratios 1:1 and 2:1. β(t) denotes the first derivative
of MSD for (c) thymol and (d) coumarin.
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