Supplementary Information

Unique Modulation Effects of Performance of Graphene-Based Ammonia Sensors via Ultrathin Bimetallic Au/Pt layers & Gate Voltages

Min Zhao,^{ab} Yi Tian,^b Lanqin Yan,^b Rujun Liu,^a Peipei Chen,^{*bc} Hanfu Wang,^{*b} Weiguo Chu^{*bc}

^a School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.

^b Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

^c Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100039, China.

*Email: wgchu@nanoctr.cn, wanghf@nanoctr.cn, chenpp@nanoctr.cn

Figure S1. Optical photograph of pristine graphene (a), SEM pictures of channel area of Au/Gr (b), Pt/Gr (c) and Pt/Au/Gr devices (d), XPS full survey-scan spectra of pristine graphene (e), experimental and fitted XPS of Au/Gr surface (f), Pt/Gr surface (g), and Pt/Au/Gr surface (h).

Figure S2. (a) Micro-Raman spectra corresponding to A, B and C positions in Fig.S1(a), (b) micro-Raman spectra of Gr, Au/Gr, Pt/Gr and Pt/Au/Gr.

Figure S3. RT dynamic response curves of (a) Au/Gr, (b) Pt/Gr, and (c) Pt/Au/Gr devices, under the back gate voltage of +60 V upon 3 min exposure to NH₃ with various concentrations.

Figure S4. The polynomial fittings of response versus time plots at baseline for (a) Au/Gr, (b) Pt/Gr, and (c) Pt/Au/Gr devices.

Section S4: Calculations of LOD of Au/Gr, Pt/Gr and Pt/Au/Gr devices.

The LOD of device can be estimated through following formula. ^[1,2]

$$LOD = 3 \times \frac{RMS}{|Slope|}$$

Here, RMS is the noise level calculated from the polynomial fitting of the $\Delta I/I_0$ versus time plots at baseline before exposure to test gas, and 'Slope' is the slope of calibration curve. The RMS can be estimated through following formula. ^[1,2]

$$RMS = \sqrt{\frac{\Sigma(a_i - a)^2}{N - 1}}$$

Taking N=35 data points at the baseline and regular residual of polynomial fittings (a_i -a).

Figure S5. RT response curves upon 3 min exposure to 5 ppm NO₂ gas under different V_{GS} for (a) Au/Gr, (b) Pt/Gr, and (c) Pt/Au/Gr devices.

Figure S6. RT response curves upon 3 min exposure to 200 ppm NH_3 gas at V_{GS} of +60V tested under different values of RH for (a) Au/Gr, (b) Pt/Gr, and (c) Pt/Au/Gr devices.

Figure S7. RT response curves at different days of devices upon 3 min exposure to 200 ppm NH_3 gas with $V_{GS} = +60V$ and RH=20% for (a) Au/Gr, (b) Pt/Gr, and (c) Pt/Au/Gr devices.

Figure S8. The TDOS (a)~(e) and PDOS (f)~(j) of NH_3 -Au/Gr systems under different values of electric field intensity.

Figure S9. The TDOS (a)~(e) and PDOS (f)~(j) of NH_3 -Pt/Gr systems under different values of electric field intensity.

Figure S10. The TDOS (a)~(e) and PDOS (f)~(j) of NH_3 -Pt/Au/Gr systems under different values of electric field intensity.

Table S1. RT response to 200 ppm NH ₃ gas for Au/Gr, Pt/Gr and Pt/Au/Gr devices under different b	back
gate voltages.	

V _G	-20 V	0 V	+20 V	+40 V	+60 V
Au/Gr	-9.29%	-10.51%	-12.52%	-15.12%	-16.08%
Pt/Gr	-16.51%	-17.53%	-17.47%	-17.50%	-17.47%
Pt/Au/Gr	-8.23%	-11.03%	-12.47%	-14.68%	-16.18%

Table S2. Response time to 200 ppm NH₃ gas for Au/Gr, Pt/Gr and Pt/Au/Gr devices under different back

gate voltages.

V _G	-20 V	0 V	+20 V	+40 V	+60 V
Au/Gr	126 s	120 s	126 s	114 s	114 s
Pt/Gr	108 s	126 s	108 s	108 s	102 s
Pt/Au/Gr	108 s	84 s	66 s	54 s	54 s

Table S3. Recovery time to 200 ppm NH $_3$ gas for Au/Gr, Pt/Gr and Pt/Au/Gr devices under different back

gate voltages.							
V _G	-20 V	0 V	+20 V	+40 V	+60 V		

Au/Gr	>20 min	28 min	24 min	20 min	12.7 min
Pt/Gr	>20 min	26 min	9.5 min	6.2 min	4.4 min
Pt/Au/Gr	>20 min	20 min	16 min	6.7 min	4.6 min

Table S4. RT responses of different devices at the back gate voltage of +60V upon 3 min exposure to NH_3 with various concentrations.

V _G	12 ppm	25 ppm	50 ppm	100 ppm	200 ppm
Au/Gr	-4.8%	-6.5%	-9.1%	-10.7%	-16.08%
Pt/Gr	-5.64%	-8.91%	-6.12%	-13.53%	-17.47%
Pt/Au/Gr	-6.43%	-7.56%	-9.7%	-12.25%	-16.18%

Table S5. TDOS near near Fermi level of different systems at different electric field strengths.

F(V/Å)	-2	0	2	4	6
NH ₃ -Au/Gr	26.38	18.95	17.15	10.48	5.97
NH ₃ -Pt/Gr	22.75	19.18	19.03	20.03	21.56
NH ₃ -Pt/Au/Gr	27.21	26.84	24.90	13.92	4.834

Table S6. E_{ads} of different systems at different electric field strengths.

F(V/Å)	0	2	4	6
NH ₃ -Au/Gr	-1.165 eV	-1.078 eV	-0.894 eV	-0.621 eV
NH ₃ -Pt/Gr	-1.766 eV	-1.231 eV	-0.843 eV	-0.301 eV
NH ₃ -Pt/Au/Gr	-1.888 eV	-1.564 eV	-1.146 eV	-0.788 eV

Table S7. Comparison of sensing performances to NH₃ gas for Pt/Au/Gr device in this work with those graphene-based gas sensors reported in the literature.

Sensing materials	Concentration of NH ₃	Detecting temperature	Response time	Response	Recovery time	References
CVD graphene on aluminum oxide substrate	1300 ppm	RT	156 s	1.5%	2.2 min	[3]
Ag-NPs/ Graphene	500 ppm	RT	min	9.5%		[4]
Ti-decorated CVD graphene	400 ppm	RT	150 s	17.9%	3 min	[5]
Co(tpfpp)ClO ₄ treated graphene	160 ppm	RT	60 s	8.34%	_	[6]
Ester functionalizated graphene oxide	100 ppm	RT	55 s	12%	1.3 min	[7]
3D RGO/PANI hybrid	50 ppm	RT	370 s	10.8%	11.3 min	[8]
α-Fe ₂ O ₃ /graphen- e nanohybrid	50 ppm	250°C	70 s	26%	20.3 min	[9]
FMNS-functionali- zed graphene	1000 ppm	RT	15 min	18.5%	16 min	[10]
Au-decorated CVD graphene	200 ppm	RT	114 s	16.08%	12.7 min	This work
Pt-decorated CVD graphene	200 ppm	RT	102 s	17.47%	4.4 min	This work
Pt/Au-decorated CVD graphene	200 ppm	RT	54 s	16.18%	4.6 min	This work

References

[1] J. Wu, S. L. Feng, Z. Li, K. Tao, J. Chu, J. M. Miao, L. Norford, *Sens. Actuators B: Chem.*, 2018, 255, 1805-1813.

[2] M. Zhao, A. Falak, Y. Tian, L.Q.Yan, R. J. Liu, W. J. Chen, H. F. Wang, T. Wu, P. P. Chen, W. G. Chu, *Phys.Chem. Chem. Phys.*, 2020, 22, 25769-25779.

[3] S. R. Huang, L. A. Panes-Ruiz, A. Croy, M. Löffler, V. Khavrus, V. Bezugly, G. Cuniberti, *Carbon*, 2021, 173, 262-270.

[4] V, Haridas, A. Sukhananazerin, J. M. Sneha, B. Pullithadathil, B. Narayanan, *Appl. Surf. Sci.*, 2020, 517: 146158.

[5] S. Tohidi, M. Parhizkar, H. Bidadi, R. Mohamad-Rezaei, Nanotechnology, 2020, 31: 415501.

[6] R. Kumar, A. Kumar, R. Singh, R. Kashyap, R. Kumar, D. Kumar, M. Kumar, Mater. Res. Express, 2019, 6: 095618.

[7] C. Mackin, V. Schroeder, A. Zurutuza, C. Su, J. Kong, T. M. Swager, Tomás Palacios, ACS Appl. Mater. Interfaces, 2018, 10, 16169-16176.

[8] M. Zhao, L. Q. Yan, X. F. Zhang, L. H. Xu, Z. W. Song, P. P. Chen, F. L. Dong, W. G. Chu, *J. Mater. Chem. C*, 2017, 5, 1113-1120.

[9] H. Song, X. Li, P. Cui, S. Guo, W. Liu, X. Wang, Sens. Actuators B: Chem., 2017, 244, 124-130.

[10] C. S. Yang, A. Mahmood, B. Kim, K. Shin, D. H. Jeon, J. K. Han, S. D. Bu, S. Park, W. J. Choi and B. Doudin, *2D Materials*, 2016, 3, 011007.