Supporting Information

Waste dry cells derived photo-reduced graphene oxide and polyoxometalate composite for solid-state supercapacitor applications

Sukanya Maity^{a,+}, Bhimaraya R Biradar^a, Saurabh Srivastava^b, Pranay R. Chandewar^c, Debaprasad Shee^c, Partha Pratim Das^a,*, Sib Sankar Mal^b,*

^aLow Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India

^bMaterials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India

^cDepartment of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India

+Current Address: Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden

1. The specific capacitance was calculated from the cyclic voltammetry by the following equation,

$$C = \frac{\int_{V_1}^{V_2} i(V) dV}{v(V_2 - V_1)}_{\dots \dots \dots \text{ (S1)}}$$

2. Capacitances with energy and power density from charge-discharge were calculated using the following equations for asymmetric arrangements:

$$C = \frac{\int iVdt}{\int\limits_{V_i}^{V_f} VdV} = \frac{2i_m \int Vdt}{V_i^2 \left\{ V_i \right\}}$$

Galvanostatic capacitance:

$$C = \frac{i(\bigtriangleup t * \bigtriangleup V)}{n(\bigtriangleup V)^2} = \frac{i(\bigtriangleup t)}{m(\bigtriangleup V)} = \frac{I(\bigtriangleup t)}{\bigtriangleup V}$$
F/g
.....(S2)

F/g

..... (S1)

..... (S3)

Energy density:
$$E = 0.5 * C * \triangle V^2$$
 Wh/kg

Power density:
$$P = \frac{E}{\Delta t} * 3600$$
 W/kg (S4)

where *I*, *m*, *t*, and ΔV are discharge current, the mass of single electrode, discharge time, and potential window, respectively.

3. The total impedance is given by,

$$Z(\omega) = Z(\omega) + jZ''(\omega), \dots (S5),$$

where $\omega = 2\pi f$, f is the frequency of the input ac signal.

The Total capacitance is given as [34],

$$c(\omega) = c'(\omega) - jc''(\omega)_{\dots}$$
 (S6),

where real the part of the capacitance $c'(\omega) = \frac{Z''(\omega)}{\omega |Z(\omega)|^2}$(S7) and

the imaginary part of the capacitance $c''(\omega) = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$(S8).

Fig. S1 DTA spectra of crGO, prGO-Mo $_2$ VW $_9$, and crGO-Mo $_2$ VW $_9$ nanocomposites.

Fig. S2 Raman spectra of crGO and Mo_2VW_9 .

Fig. S3 EDS spectra of (a) crGO and (b) Mo₂VW₉.

Fig. S4 FESEM micrograph at different magnification for (a-b) prGO-Mo₂VW₉, (c-d) crGO-Mo₂VW₉ nanocomposites, and (e) bare crGO.

Fig. S5 XPS spectra of (a) overall survey, (b) C 1s, (c) W 4f, (d) Si 2p, (e) V 2p, (f) Mo 3d, and (g) O 1s for $crGO-Mo_2VW_9$

nanocomposite.

Fig. S6 (a) CV and (b) GCD response of pristine Mo₂VW₉.

Fig. S7 Coulombic efficiency and specific capacitance variation of (a) prGO-Mo₂VW₉ and (b) crGO-Mo₂VW₉

nanocomposites.

Fig. S8 (a) CV and (b) GCD response of pristine crGO.

Fig. S9 Coulombic efficiency and specific capacitance variation of the crGO//crGO-Mo₂VW₉ cell.

Fig. S10 Repeated BET isotherm of prGO/Mo₂VW₉ nanocomposite.

$\label{eq:sigma} \textbf{Table S1.} Specific capacitance and energy of prGO-Mo_2VW_9 nanocomposite at different scan rates from CV:$

Scan rate (mV/s)	Capacitance (F/g)	Energy density (Wh/kg)
5	97.0361	10.9165
10	98.1652	11.0435
20	92.1861	10.3709
50	78.9094	8.8773
100	65.4347	7.3624

Table S2. Specific capacitance, energy, and power of prGO-Mo₂VW₉ nanocomposite at different current densities from GCD:

Current density (A/g) Capacitance (F/g) Energy density (Wh/kg)	Power density (W/kg)	Coulombic efficiency
--	----------------------	----------------------

0.3	1622.7	45.63	1585.59	54.29
0.5	992.29	27.91	2098.28	72.84
0.8	944.55	26.56	3061.17	81.81
1	940.86	26.46	3721.06	84.90
2	925.47	26.02	7135.52	90.54
3	539.40	15.17	10113.75	100

Table S3. The electrical component values of the equivalent series circuit for prGO-Mo ₂ VW ₉ nanocompo

Equivalent Series Resistance (R _s)	Circuit resistance (R _{ct})	Cell Capacitance (C _T)	Knee frequency (f _k)	Time constant (τ)
0.76 Ω	3.02 Ω	2.69 mF	15.85 Hz	16.2 ms

Table S4. Specific capacitance and energy of crGO-Mo₂VW₉ nanocomposite at different scan rates from CV:

Scan rate (mV/s)	Capacitance (F/g)	Energy density (Wh/kg)
5	252.99	28.46
10	315.17	34.4577
20	304.093	34.2104
50	260.52	29.3094
100	189.87	21.36

Table S5. Spec	cific capacitance, en	ergy, and power o	of crGO-Mo ₂ VW ₀	nanocomposite at dif	fferent current c	lensities from GCD:
Tuble 33. Spec	ine capacitance, en	ergy, und power (nunocomposite ut un		choines non deb.

Current density (A/g)	Capacitance (F/g)	Energy density (Wh/kg)	Power density (W/kg)	Coulombic efficiency
0.3	470.2	52.87	540	79.16
0.5	466.1	52.44	540.71	79.50
0.8	460.8	51.84	1440	91.13
1	460.4	51.79	1800	93.16
2	437.3	49.20	3600	97.23
3	421.3	47.39	5400	98.75

 $\textbf{Table S6.} The electrical component values of the equivalent series circuit for crGO-Mo_2VW_9 nanocomposite$

Equivalent Series Resistance (R _s)	Circuit resistance (R _{ct})	Cell Capacitance (C _T)	Knee frequency (f _k)	Time constant (τ)
---	--	---------------------------------------	----------------------------------	-------------------

0.82 Ω	14.1 Ω	60 mF	0.16 Hz	15.92 ms

Table S7. Specific capacitance, energy, and power of $crGO//crGO-Mo_2VW_9$ nanocomposite at a different current density from GCD:

Current density (A/g)	Capacitance (F/g)	Energy density (Wh/kg)	Power density (W/kg)	Coulombic efficiency
0.5	230.66	46.13	1194.70	76.21
0.8	0.8 225.06		1929.08	83.56
1	220.66	44.13	2400.00	85.30
2	208	41.60	4800.00	94.94
3	188	37.6	7200	95.70
4	176	35.2	9600	95.85

Table S8.	The electrical	component values	of the eau	ivalent series	circuit for cr	GO-Mo ₂ VW _a	nanocomposite
			0		0	ee e ₂ g	

Equivalent Series Resistance (R _s)	Circuit resistance (R _{ct})	Cell Capacitance (C _T)	Knee frequency (f _k)	Time constant (τ)
0.468 Ω	3.44 Ω	232.4 mF	0.1 Hz	1.6 ms