Supporting Information

Theoretical study on superconductivity of graphene-like TMB₆ (TM = Cr, Fe and Co) monolayer and its potential anchoring and catalytic properties for Lithium-Sulfur batteries

Figure S1. The electronic band structure of (a) FeB_6 and (b) CrB_6 were calculated by using PBE and HSE06. The Fermi energy have been shifted to zero.

Table S1 Calculated parameters of C_{ij} (N·m⁻¹), Young's modulus (N·m⁻¹) and the Poisson's ratio for CoB₆, FeB₆ and CrB₆.

Compounds	C ₁₁	C ₁₂	C ₁₃	C ₃₃	C ₄₄	C ₆₆	$\mathbf{Y}_{x/y}$	$v_{x/y}$
CoB ₆	159.6	55.5	0.14	0.13	0.01	52.05	140.3	0.35
FeB ₆	177.4	48.6	0.71	1.53	3.72	64.4	164.1	0.27
CrB ₆	106.9	9.4	0.26	0.01	0.01	48.75	106.1	0.09

Table S2 Corresponding total energy (eV) of per unit cell and magnetic moment (μ_B) in CoB₆, FeB₆ and CrB₆.

Compounds	Configuration	Energy (eV)	Magnetic moment ($\mu_{\rm B}$)
	Nonmagnetic	-42.5407	0
CaP	FM	-42.5407	0
COD_6	AFM-Zigzag	-42.5407	0
	AFM-Stripy	-42.5407	0
	Nonmagnetic	-43.9771	0
FaD	FM	-43.9771	0
геb ₆	AFM-Zigzag	-43.9771	0
	AFM-Stripy	-43.9771	0
	Nonmagnetic	-44.4806	0
CrD	FM	-44.4806	0
CID ₆	AFM-Zigzag	-44.4806	0
	AFM-Stripy	-44.4806	0

Figure S2 Possible magnetic configurations of TMB₆ monolayers. The spin-up and spin-down orientations are indicated by the up and down arrows, respectively.

Figure S3. The variations of the total energy of (a) CoB_6 , (b) FeB_6 , and (c) CrB_6 at 400 K during the AIMD simulations. The insets are the top and side views of the last structural snapshots.

Figure S4. Phonon dispersions of (a) FeB₆ and (b) CrB₆.

Figure S5. The electronic band structure of (a) original CoB₆ and (b) CoB₆ removed four electrons.

Figure S6. Effect of biaxial strain on phonon dispersions for CoB₆ under (a) strain= -1% and (b) strain

Figure S7. Top and side view of the optimized structures of S_8 and ${\rm Li}_2S_n$ on ${\rm CoB}_6$ monolayer.

Figure S8. Top and side view of the optimized structures of S_8 and Li_2S_n on FeB₆ monolayer.

Figure S9. Top and side view of the optimized structures of S_8 and Li_2S_n on CrB_6 monolayer.

S_8 , LiPS species (ΔQ) and CrB ₆ monolayer.							
Li_2S_n	E _{ads} (eV)	$d_{\text{Li-S}}(\text{\AA})$	$d_{\text{S-Cr}}(\text{\AA})$	$\Delta Q(e)$			
Li_2S_8	9.06	2.586	2.146	-0.483			
Li_2S_6	5.27	2.605	2.259	-0.097			
Li_2S_4	5.56	2.514	2.108	-0.351			
Li_2S_2	6.36	2.621	2.087	-0.326			
Li ₂ S	5.64	2.659	2.131	-0.071			
\mathbf{S}_8	4.03	N/A	2.273	0.116			

Table S3 The adsorption energies (E_{ads}), the nearest S-Cr bond length between CrB₆ and Li₂S_n (d_{S-Cr}), the shortest Li-S bond length in Li₂S_n (d_{Li-S}), and charge transfers between S₈, LiPS species (ΔQ) and CrB₆ monolayer.

Figure S10. Top and side views of the charge density difference between (a) S₈, (b) Li₂S₈, (c) Li₂S₆, (d) Li₂S₄, (e) Li₂S₂, (f) Li₂S and CrB₆. Green and red represent charge depletion and gain, respectively.