Supplementary Material

Probing Conformational Landscapes of Binding and Allostery in the SARS-CoV-2 Omicron Variant Complexes Using Microsecond Atomistic Simulations and Perturbation-Based Profiling Approaches: Hidden Role of Omicron Mutations as Modulators of Allosteric Signaling and Epistatic Relationships

Gennady Verkhivker, ${ }^{1,2,3 *}$ Mohammed Alshahrani, ${ }^{1}$ Grace Gupta, ${ }^{1}$ Sian Xiao, ${ }^{4}$ Peng Tao ${ }^{4}$
${ }^{1}$ Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States of America; alshahrani@chapman.edu (M.A.); grgupta@chapman.edu (G.G.)
${ }^{2}$ Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America; verkhivk@chapman.edu (G.V.)
${ }^{3}$ Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America
${ }^{4}$ Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, United States of America; sxiao@smu.edu (S.X.); ptao@smu.edu (P.T.)

* Correspondence: verkhivk@ chapman.edu; Tel.: +1-714-516-4586 (G.V)

Figure S1. The SARS-CoV-2 RBD structure and binding interface residues in the RBD-ACE2 complexes. (A) The structure of the S-RBD (in ribbons) with Omicron mutations shown in red spheres. The RBD core region, the RBM region and the RBM tip motif are indicated by arrows. (B) Superposition of the RBD-ACE2 binding interface residues for the WT RBD-ACE2 complex (pdb id 6M0J) and Omicron BA1 RBD-ACE2 (pdb id 7WBP).

Figure S2. Conformational dynamics profiles obtained from all-atom MD simulations of the Omicron RBD BA.1, BA.2, BA. 3 and BA.4/BA. 5 complexes with hACE2. The RMSD profiles for the RBD residues obtained from 3 microsecond MD simulations of the Omicron RBD BA.1hACE2 complex, pdb id 7WBP (A), Omicron RBD BA.2-hACE2 complex, pdb id 7XB0 (B), Omicron RBD BA.3-hACE2 complex, pdb id 7XB1 (C) and Omicron RBD BA.4/BA.5-hACE2 complex, pdb id 7XWA (D).

Figure S3. Conformational dynamics profiles of the ACE2 residues obtained from MD simulations of the Omicron RBD BA.1, BA.2, BA. 3 and BA.4/BA. 5 complexes with hACE2. The RMSD profiles for the ACE2 residues obtained from 3 microsecond MD simulations of the Omicron RBD BA.1-hACE2 complex, pdb id 7WBP(A), Omicron RBD BA.2-hACE2 complex, pdb id 7XB0 (B), Omicron RBD BA.3-hACE2 complex, pdb id 7XB1 (C) and Omicron RBD BA.4/BA.5-hACE2 complex, pdb id 7XWA (D).

Table S1. Statistical analysis of the intermolecular contact residues in Omicron RBD-hACE2 complexes.*

ACE2	BA. 1 RBD	BA. 2 RBD	BA. 3 RBD	$\begin{gathered} \text { BA. } 4 / 5 \\ \text { RBD } \end{gathered}$
S19	$\begin{gathered} \text { A475, } \\ \text { G476,N477 } \end{gathered}$	$\begin{gathered} \mathrm{A} 475, \\ \mathrm{G} 476, \mathrm{~N} 477 \end{gathered}$	$\begin{gathered} \mathrm{A} 475, \\ \mathrm{G} 476, \mathrm{~N} 477 \end{gathered}$	$\begin{aligned} & \text { A475, } \\ & \text { G476,N477 } \end{aligned}$
T20		N477	A475,N477	N477
Q24	$\begin{gathered} \text { A475, } \\ \text { G476,N477 } \\ \text { F486, } \\ \text { N487, Y489 } \end{gathered}$	$\begin{gathered} \text { A475, } \\ \text { G476,N477 } \\ \text { F486,N487, } \\ \text { Y489 } \end{gathered}$	$\begin{gathered} \text { A475, } \\ \text { G476,N477 } \\ \text { F486,N487, } \\ \text { Y489 } \end{gathered}$	$\begin{aligned} & \text { A475, } \\ & \text { G476,N477, } \\ & \text { N487, Y489 } \end{aligned}$
T27	$\begin{gathered} \text { F456, } \\ \text { Y473, } \\ \text { A475,Y489 } \end{gathered}$	$\begin{aligned} & \text { F456, Y473, } \\ & \text { A475,Y489 } \end{aligned}$	$\begin{gathered} \mathrm{F} 456, \\ \mathrm{Y} 473, \\ \mathrm{~A} 475, \mathrm{Y} 489 \end{gathered}$	$\begin{aligned} & \text { F456,Y473, } \\ & \text { A475,Y489 } \end{aligned}$
F28	N487,Y489	N487,Y489	Y489	$\begin{aligned} & \text { F456, } \\ & \text { N487,Y489 } \end{aligned}$
F30	L455, F456	$\begin{aligned} & \text { N417, L455, } \\ & \text { F456 } \\ & \hline \end{aligned}$	L455, F456	$\begin{gathered} \mathrm{L} 455, \\ \mathrm{~F} 456, \mathrm{Q} 493 \\ \hline \end{gathered}$
K31	$\begin{gathered} \text { L455, } \\ \text { F456, } \\ \mathrm{Y} 489, \mathrm{R} 493 \end{gathered}$	L455, F456, G485,Y489, R493	$\begin{gathered} \text { L455, } \\ \text { F456, } \\ \text { Y489,R493 } \end{gathered}$	$\begin{aligned} & \text { L455, F456, } \\ & \text { Y489,Q493 } \end{aligned}$
H34	$\begin{gathered} \mathrm{Y} 453, \\ \text { L455, R493, } \\ \text { S494, Y495 } \end{gathered}$	$\begin{gathered} \text { R403, } \\ \text { N417, Y453, } \\ \text { L455, R493 } \end{gathered}$	$\begin{gathered} \text { N417, } \\ \text { Y453, L455, } \\ \text { R493 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { N417, Y453, } \\ & \text { L455, R493 } \end{aligned}$
E35	R493	R493	R493	Q493
E37	H505	H505	H505	H505
D38	$\begin{gathered} \mathrm{Y} 449, \\ \text { S496, R498, } \\ \text { Y501 } \end{gathered}$	$\begin{aligned} & \text { Y449, Y495, } \\ & \text { G496, R498, } \\ & \text { Y501 } \end{aligned}$	$\begin{gathered} \mathrm{Y} 449 \\ \mathrm{Y} 495, \mathrm{R} 498 \\ \text { Y501 } \end{gathered}$	$\begin{aligned} & \text { Y449, } \\ & \text { Y495, } \\ & \text { G496, R498, } \\ & \text { Y501 } \end{aligned}$
Y41	$\begin{gathered} \mathrm{R} 498, \\ \mathrm{~T} 500, \mathrm{Y} 501 \end{gathered}$	$\begin{gathered} \mathrm{R} 498, \\ \mathrm{~T} 500, \mathrm{Y} 501 \end{gathered}$	$\begin{gathered} \mathrm{R} 498, \\ \mathrm{~T} 500, \mathrm{Y} 501 \end{gathered}$	$\begin{aligned} & \text { R498, T500, } \\ & \text { Y501 } \end{aligned}$
Q42	$\begin{gathered} \mathrm{S} 446, \\ \text { Y449, R498 } \\ \hline \end{gathered}$	Y449, R498	Y449, R498	Y449, R498
L45	R498,T500	V445, R498,T500	$\begin{aligned} & \text { V445, } \\ & \text { R498,T500 } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V} 445, \\ \mathrm{R} 498, \mathrm{~T} 500 \\ \hline \end{array}$
L79	F486	G485, F486	F486	V486
M82	F486	F486	F486	V486

Y83	$\begin{gathered} \text { F486, } \\ \text { N487, Y489 } \end{gathered}$	$\begin{gathered} F 486, \\ \mathrm{~N} 487, \mathrm{Y} 489 \end{gathered}$	$\begin{gathered} \text { F486, } \\ \text { N487, Y489 } \end{gathered}$	$\begin{aligned} & \text { N487, } \\ & \text { Y489 } \\ & \hline \end{aligned}$
Q325	V593	Q506	V503, Q506	
G326			T500	T500
N330	T500	P499,T500	P499,T500	P499,T500
G352		Y501,G502	Y501,G502	Y501
K353	$\begin{aligned} & \text { R403, Y495, } \\ & \text { S496, T500, } \\ & \text { Y501, G502, } \\ & \text { H505 } \end{aligned}$	$\begin{aligned} & \text { R403,Y495, } \\ & \text { T500,Y501, } \\ & \text { G502,V503, } \\ & \text { H505 } \end{aligned}$	$\begin{aligned} & \text { R403, Y495, } \\ & \text { T500,Y501, } \\ & \text { G502,V503, } \\ & \text { H505 } \end{aligned}$	$\begin{aligned} & \text { Y495, } \\ & \text { T500,Y501, } \\ & \text { G502, H505 } \end{aligned}$
G354	$\begin{aligned} & \text { T500,Y501, } \\ & \text { G502,V503, } \\ & \text { H505 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { T500,Y501, } \\ \text { G502,V503, } \\ \text { H505 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T500,Y501, } \\ & \text { G502,V503, } \\ & \text { H505 } \end{aligned}$	$\begin{aligned} & \text { Y501, } \\ & \text { G502,V503, } \\ & \text { H505 } \\ & \hline \end{aligned}$
D355	$\begin{gathered} \text { T500, } \\ \text { Y501,G502 } \end{gathered}$	$\begin{gathered} \text { T500, } \\ \text { Y501,G502 } \end{gathered}$	$\begin{gathered} \text { T500, } \\ \text { Y501,G502 } \end{gathered}$	$\begin{aligned} & \hline \text { T500, } \\ & \text { Y501,G502 } \end{aligned}$
R357		T500		T500

*Two residues are defined in contact if any of their heavy atom is within a distance of $5.0 \AA$

Table S2. The Occupancy of the Pairwise Interactions in the Omicron RBD-hACE2 Complexes

	Interaction	$\begin{aligned} & \text { BA.1- } \\ & \text { ACE2 } \end{aligned}$	$\begin{aligned} & \hline \text { BA.2- } \\ & \text { ACE2 } \end{aligned}$	$\begin{aligned} & \text { BA.3- } \\ & \text { ACE2 } \end{aligned}$	$\begin{gathered} \hline \text { BA.4/BA.5- } \\ \text { ACE2 } \end{gathered}$
黄淢	R403-E37	65\%	73\%	73\%	62\%
	K440-E329	31\%	54\%	54\%	53\%
	R493-E35	77\%	92\%	99\%	
	R493-D38	26\%	89\%	89\%	
	R498-D38	59\%	95\%	83\%	78\%
	F456-T27	95\%	96\%	88\%	57\%
	Y473-T27	92\%	89\%	85\%	72\%
	A475-T27	88\%	93\%	83\%	66\%
	F486-F28	78\%	97\%	90\%	54\%
	$\begin{aligned} & \text { F486/V486- } \\ & \text { L79 } \end{aligned}$	85\%	89\%	82\%	57\%
	$\begin{aligned} & \text { F486/V486- } \\ & \text { M82 } \end{aligned}$	85\%	96\%	90\%	62\%
	$\begin{aligned} & \text { F486/V486- } \\ & \text { Y83 } \end{aligned}$	90\%	95\%	87\%	53\%
	Y489-F28	97\%	94\%	95\%	86\%
	Y489-L79	90\%	95\%	86\%	72\%
	Y489-Y83	96\%	82\%	88\%	77\%
	Y453-H34	66\%	82\%	92\%	52\%
	Y449-D38	65\%	82\%	58\%	60\%
	A475-S19	60\%	95\%	85\%	82\%
	N477-S19	58\%	97\%	97\%	69\%
	N487-Q24	62\%	92\%	92\%	71\%
	N487-Y83	76\%	92\%	90\%	54\%
	Y489-F28	82\%	86\%	80\%	68\%
	T500-D355	82\%	77\%	90\%	72\%
	T500-Y41	72\%	80\%	95\%	54\%
	G502-K353	78\%	84\%	78\%	67\%
	Y501-K353	86\%	90\%	84\%	77\%
	Q493-K31				87\%
	Q493-H34				90\%

