Robustness of Heteroaggregates Involving Hydrophobic Cholesterol and its Mimetics

Rituparna Hazra and Durba Roy*

Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India

Supplementary Information

System	No. of lipic	d molecules	Length of
	L ₁	L ₂	simulation (ns)
10 CHL _B	10	0	100
20 CHL _B	20	0	100
40 CHM _B	40	0	330
40 CAM _B	40	0	330
40 ARJ _B	40	0	330
1:1 CHL:CHM	10	10	330
1:1 CHL:CAM	10	10	330
1:1 CHL:ARJ	10	10	330
1:4 CHL:CHM	10	40	330
1:4 CHL:CAM	10	40	330
1:4 CHL:ARJ	10	40	330
4:1 CHL:CHM	40	10	330
4:1 CHL:CAM	40	10	330
4:1 CHL:ARJ	40	10	330

Table SI-1: Composition of the systems

CHL: Cholesterol; CHM: Cholesteryl hemisuccinate; CAM: Campesterol; ARJ: Arjunic acid. The subscript 'B' refers to blank systems containing only one pure component solvated in TIP3P water.

— Starting structure 1 — Starting structure 2 — Starting structure 3

Figure SI-1. Simulation trajectories showing convergence of R_g and N_c starting from different initial configuration of the (1:4) CHL: Lipid compositions. The color code for each trajectory is given in the top panel.

Figure SI-2. Initial configurations of the simulation cell for all the systems. The color codes used for each lipid type is given in the top panel.

Figure SI-3. Representative structures of the largest cluster observed along the course of simulations for each system. The total number of lipid monomers present in the cluster is given within parentheses. The color codes used for each lipid type is given in the top panel.

Figure SI-4. Porod plots constructed from small angle scattering data of the aggregated phases for the pure (suffix B) and mixed micellar systems. The slopes of each plot denoting the '*Porod exponent*' are shown within parentheses.

Force Field Parameters for CHM, CAM and ARJ:

For each molecule, the bonding and non-bonding parameters are taken from the closest atom type in CHARMM36. Charges are taken from the optimized geometry of the molecules obtained using CAM-B3LYP functional and 6-311++g(d,p) basis set in the Gaussian 09 platform.

Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge
index	name	type		index	name	type		index	name	type	
1	C3	CRL1	0.582277	33	C11	CRL2	-0.021019	65	H25	HAL1	-0.043250
2	H3	HGA1	-0.004251	34	H11A	HGA2	0.016156	66	C26	CTL3	-0.435655
3	O3	OSL	-0.646302	35	H11B	HGA2	0.020881	67	H26A	HAL3	0.097601
4	C4	CRL2	-0.367038	36	C9	CRL1	-0.157893	68	H26B	HAL3	0.094463
5	H4A	HGA2	0.128398	37	H9	HGA1	0.032746	69	H26C	HAL3	0.092248
6	H4B	HGA2	0.131352	38	C10	CRL1	0.446215	70	C27	CTL3	-0.437002
7	C5	CEL1	-0.136633	39	C19	CTL3	-0.355719	71	H27A	HAL3	0.097111
8	C6	CEL1	-0.236086	40	H19A	HAL3	0.063898	72	H27B	HAL3	0.092627
9	H6	HEL1	0.147327	41	H19B	HAL3	0.091989	73	H27C	HAL3	0.096375
10	C7	CRL2	-0.165341	42	H19C	HAL3	0.075964	74	C28	CL	0.879366
11	H7A	HGA2	0.069370	43	C1	CRL2	-0.205895	75	O28	OCL	-0.597207
12	H7B	HGA2	0.076832	44	H1A	HGA2	0.039908	76	C29	CTL2	-0.384925
13	C8	CRL1	0.180131	45	H1B	HGA2	0.075689	77	H29A	HAL2	0.138458
14	H8	HGA1	-0.002772	46	C2	CRL2	-0.206092	78	H29B	HAL2	0.139571
15	C14	CRL1	-0.003822	47	H2A	HGA2	0.078251	79	C30	CTL2	-0.074587
16	H14	HGA1	-0.006738	48	H2B	HGA2	0.070298	80	H30A	HAL2	0.076960
17	C15	CRL2	-0.337397	49	C20	CTL1	0.150113	81	H30B	HAL2	0.078535
18	H15A	HGA2	0.069246	50	H20	HAL1	-0.013197	82	C31	CL	0.766838
19	H15B	HGA2	0.073557	51	C21	CTL3	-0.392536	83	O31	OCL	-0.587298
20	C16	CRL2	0.045611	52	H21A	HAL3	0.080033	84	O32	OHL	-0.669639
21	H16A	HGA2	-0.006404	53	H21B	HAL3	0.067831	85	H32	HGA1	0.449167
22	H16B	HGA2	0.011095	54	H21C	HAL3	0.100738				
23	C17	CRL1	0.150109	55	C22	CTL2	-0.230871				
24	H17	HGA1	-0.102873	56	H22A	HAL2	0.060804				
25	C13	CRL1	0.561434	57	H22B	HAL2	0.014377				
26	C18	CTL3	-0.677601	58	C23	CTL2	0.250634				
27	H18A	HAL3	0.136962	59	H23A	HAL2	-0.011427				
28	H18B	HAL3	0.137266	60	H23B	HAL2	-0.010493				
29	H18C	HAL3	0.149098	61	C24	CTL2	-0.382619				
30	C12	CRL2	-0.244385	62	H24A	HAL2	0.069229				
31	H12A	HGA2	0.052453	63	H24B	HAL2	0.074425				
32	H12B	HGA2	0.020357	64	C25	CTL1	0.452593				

Table SI-3: Force field parameters for ARJ

Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge
index	name	type		index	name	type		index	name	type	
1	O10	OHL	-0.685343	30	C3	CRL2	-0.160350	59	H11	HGA1	0.093063
2	011	OHL	-0.725790	31	C9A	CTL3	-0.478530	60	H261	HAL3	0.190585
3	01	OHL	-0.833193	32	C9B	CTL3	-0.676560	61	H262	HAL3	0.064955
4	04	OCL	-0.607574	33	C33	CL	0.698977	62	H263	HAL3	0.088115
5	O33	OCL	-0.589698	34	C34	CTL3	-0.406686	63	H1	HGA1	-0.082614
6	C6B	CEL1	0.397907	35	C35	CTL3	-0.564686	64	H41	HGA2	-0.003376
7	C12B	CRL1	0.051008	36	H12B	HGA1	0.001582	65	H42	HGA2	0.041161
8	C12A	CEL1	0.189002	37	H8A	HGA1	-0.030944	66	H31	HGA2	0.030211
9	C6A	CEL1	0.776108	38	H71	HGA2	-0.014409	67	H32	HGA2	0.048288
10	C8A	CRL1	-0.107219	39	H72	HGA2	0.006390	68	H9A3	HAL3	0.090076
11	C7	CRL2	-0.071151	40	H81	HGA2	0.059832	69	H9A2	HAL3	0.131854
12	C14A	CEL1	-0.635771	41	H82	HGA2	0.038955	70	H9A1	HAL3	0.087262
13	C8	CRL2	-0.178783	42	H14B	HGA1	0.023470	71	H9B2	HAL3	0.137256
14	C9	CEL1	0.745572	43	H131	HGA2	0.064761	72	H9B3	HAL3	0.128191
15	C14B	CRL1	0.209725	44	H132	HGA2	0.048916	73	H9B1	HAL3	0.167575
16	C13	CRL2	-0.102231	45	H121	HGA2	0.074637	74	H341	HAL3	0.090113
17	C12	CRL2	-0.431649	46	H122	HGA2	0.123890	75	H342	HAL3	0.064532
18	C6	CRL2	-0.004823	47	H61	HGA2	-0.023825	76	H343	HAL3	0.111889
19	C4A	CEL1	0.072151	48	H62	HGA2	-0.028716	77	H351	HAL3	0.144053
20	C20	CTL3	-0.461668	49	H201	HAL3	0.074210	78	H352	HAL3	0.108905
21	C5	CRL2	-0.238301	50	H202	HAL3	0.100978	79	H353	HAL3	0.123202
22	C10	CRL1	-0.012954	51	H203	HAL3	0.081235	80	HO10	HOL	0.432849
23	C14	CEL1	-0.094975	52	H51	HGA2	0.072522	81	HO11	HOL	0.420271
24	C24	CTL3	-0.552582	53	H52	HGA2	0.027611	82	HO1	HOL	0.436276
25	C11	CRL1	0.387834	54	H10	HGA1	0.026590	83	HO4	HGA1	0.422501
26	C26	CTL3	-0.581387	55	H14	HEL1	0.070106				
27	C1	CRL1	0.697452	56	H241	HAL3	0.160759				
28	C4	CRL2	-0.085766	57	H242	HAL3	0.127175				
29	C2	CEL1	0.286103	58	H243	HAL3	0.122907		1		

Table SI-4: Force field parameters for CAM

Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge	Atom	Atom	Atom	Partial charge
index	name	type		index	name	type		index	name	type	
1	C1	CRL2	-0.285008	27	C27	CTL3	-0.473687	53	H18A	HAL3	0.127735
2	C2	CRL2	-0.052119	28	C28	CTL3	-0.498230	54	H18B	HAL3	0.122471
3	C3	CRL1	0.431198	29	O3	OHL	-0.746890	55	H18C	HAL3	0.117945
4	C4	CRL2	-0.392705	30	H3′	HOL	0.423701	56	H19A	HAL3	0.120746
5	C5	CEL1	-0.052916	31	H1A	HGA2	0.068530	57	H19B	HAL3	0.088407
6	C6	CEL1	-0.320694	32	H1B	HGA2	0.054247	58	H19C	HAL3	0.094874
7	C7	CRL2	0.007818	33	H2A	HGA2	0.052846	59	H20	HAL1	-0.040908
8	C8	CRL1	0.016196	34	H2B	HGA2	0.061834	60	H21A	HAL3	0.079228
9	C9	CRL1	0.011474	35	H3	HGA1	-0.013132	61	H21B	HAL3	0.101511
10	C10	CRL1	0.446120	36	H4A	HGA2	0.134015	62	H21C	HAL3	0.076740
11	C11	CRL2	-0.048447	37	H4B	HGA2	0.108738	63	H22A	HAL2	-0.005737
12	C12	CRL2	-0.261726	38	H6	HEL1	0.149745	64	H22B	HAL2	0.063783
13	C13	CRL1	0.609305	39	H7A	HGA2	0.029278	65	H23A	HAL2	0.064195
14	C14	CRL1	-0.022443	40	H7B	HGA2	0.038737	66	H23B	HAL2	0.078167
15	C15	CRL2	-0.258537	41	H8	HGA1	0.017981	67	H24	HAL1	-0.016559
16	C16	CRL2	-0.095213	42	H9	HGA1	-0.012897	68	H25	HAL1	-0.080294
17	C17	CRL1	0.165964	43	H11A	HGA2	0.028344	69	H26A	HAL3	0.087039
18	C18	CTL3	-0.620508	44	H11B	HGA2	0.018356	70	H26B	HAL3	0.115913
19	C19	CTL3	-0.456997	45	H12A	HGA2	0.048780	71	H26C	HAL3	0.115832
20	C20	CTL1	0.234229	46	H12B	HGA2	0.018275	72	H27A	HAL3	0.101797
21	C21	CTL3	-0.415009	47	H14	HGA1	0.001196	73	H27B	HAL3	0.098645
22	C22	CTL2	-0.189478	48	H15A	HGA2	0.060487	74	H27C	HAL3	0.099151
23	C23	CTL2	-0.204118	49	H15B	HGA2	0.060177	75	H28A	HAL3	0.107817
24	C24	CTL1	0.228758	50	H16A	HGA2	0.047679	76	H28B	HAL3	0.106094
25	C25	CTL1	0.495573	51	H16B	HGA2	0.026372	77	H28C	HAL3	0.117405
26	C26	CTL3	-0.513396	52	H17	HGA1	-0.103801				

Some bonding parameters for CHM and ARJ that could not be retrieved straight forwardly from CHARMM36 force field are mentioned below. The equilibrium bond length (b_0), angle (θ_0), and dihedral (ψ_0) values are obtained from the respective optimized geometries of the molecules. The corresponding force constants (k_b , k_{θ} , k_{ψ}) are extracted from the existing CHARMM36 Lipid FF by finding the closest match of a combination of atom types that fits the chemical nature of the bonding reasonably.

Molecule	Bond connectivity	b ₀ (Å)	k _b (kcal mol ⁻¹ Å ⁻²)	Source
CHM	HGA1-OHL	0.960	545.0	CHARMM
	OSL-CRL1	1.334	150.0	CHARMM
ARJ	HGA1-OCL	0.9803	545.0	CHARMM
	CEL1-CL	1.5196	200.0	CHARMM

Table SI-5: Bonding parameters for CHM and ARJ

Molecule	Angle connectivity	k ₀	θ ₀ (°)	Source	
		(kcal mol ⁻¹ rad ⁻²)			
CHM	HGA1-CRL1-OSL	56.205	107.8374	Swissparam	
	CRL2-CRL1-OSL	71.390	107.1322	Swissparam	
ARJ	OHL-CRL1-CRL1	75.700	110.10	CHARMM	
	CTL3-CEL1-CRL2	42.00	108.9927	CHARMM	
	CTL3-CEL1-CTL3	47.00	107.2517	CHARMM	
	CEL1-CRL1-OHL	75.700	113.3336	CHARMM	
	CEL1-CRL1-CEL1	53.350	117.4994	CHARMM	
	CRL1-CEL1-CTL3	48.00	113.6067	CHARMM	
	CEL1-CL-OCL	55.00	126.2707	CHARMM	
-	CRL2-CEL1-CRL2	58.350	109.2143	CHARMM	
	CL-CEL1-CRL2	58.350	106.5039	CHARMM	
	CL-CEL1-CRL1	34.500	108.3469	CHARMM	
	CL-OCL-HGA1	41,956	111.8971	CHARMM	

Molecule	Dihedral connectivity	k _y	Multiplicity (n)	δ(°)	Source
		(kcal mol ⁻¹)			
CHM	CRL2-CRL1-OSL-CL	0.160	3	154.86	Swissparam
	HGA1-CRL1-OSL-CL	-0.152	3	35.529	Swissparam
ARJ	HAL3-CTL3-CEL1-CRL2	0.0500	3	-61.9507	CHARMM
	CTL3-CEL1-CRL2-CRL1	0.5000	1	-85.9406	CHARMM
	OCL-CL-CEL1-CRL2	0.0000	6	60.0684	CHARMM
	OCL -CL-CEL1-CRL1	0.0000	6	-177.3779	CHARMM
	OCL-CL-OCL-HGA1	2.05	2	-0.0293	CHARMM
	CRL1-CEL1-CTL3-HAL3	0.0500	3	152.0083	CHARMM
	CRL1-CEL1-CRL2-CRL2	0.9100	1	-45.364	CHARMM
	CRL2-CRL2-CEL1-CTL3	0.5000	1	73.4013	CHARMM
	CRL2-CRL2-CEL1-CL	0.1800	2	68.232	CHARMM
	CRL2-CRL2-CEL1-CRL2	0.5000	1	-178.9013	CHARMM
	X-CL-OCL-X	2.05	2	180.00	CHARMM
	CTL3-CEL1-CRL2-HGA2	0.0300	3	-166.5415	CHARMM
	CRL2-CEL1-CRL2-HGA2	0.0300	3	-78.872	CHARMM
	CTL3-CEL1-CTL3-HAL3	0.0500	3	-171.9531	CHARMM
	CL-CEL1-CRL2-HGA2	0.3000	3	-173.6041	CHARMM

Calculation of Intermolecular Interactions from MD trajectories:^{1,2}

The weak forces, primarily the short ranged vdW interactions are vital in sustaining the micellar structures. We have calculated the magnitudes of such interaction energies from the instantaneous configurations of the molecular systems as collected from the molecular dynamics trajectories.

1. van der Waals Interactions:

1.1. Dipole-dipole Interaction (Keesom force): The dipole-dipole interaction potential is given by

$$V(R,\theta,\varphi) = \frac{-\mu_1 \mu_2 (2\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \cos\varphi)}{4\pi\epsilon_0 R^3}$$

Here μ_1 and μ_2 are the dipole moments of molecule 1 and molecule 2 respectively.

The dipole moment of the molecule can be written as $\mu_i = \sum_{i=1}^{n} q_i \vec{r}_i$, where *N* is the total number of atoms, q_i is the partial charge of atom *i* and r_i is a vector representing the cartesian coordinates of atom *i* as (x_i, y_i, z_i) . The coordinates of all the atoms present in the cluster is translated to the centre of mass of the respective molecule for calculating the dipole moments. The net dipole moment is given by $\mu = \sqrt{(\mu_x^2 + \mu_y^2 + \mu_z^2)}$.

R is the distance between centre of mass of molecule 1 (COM₁) and centre of mass of molecule 2 (COM₂). θ_1 is the angle between μ_1 and *R*, similarly θ_2 is the angle between μ_2 and *R*. φ is the angle between the planes (*R*, μ_1) and (*R*, μ_2), ϵ_0 is the absolute dielectric permittivity of vacuum (8.854 × 10⁻¹² Fm⁻¹).

1.2. Dipole-induced dipole Interaction (Debye force): The dipole-induced dipole interaction energy is given by

$$V(R,\theta) = -\left[\mu_1^2 \alpha_2' (3\cos^2 \theta_1 + 1) + \mu_2^2 \alpha_1' (3\cos^2 \theta_2 + 1)\right] / (2(4\pi\epsilon_0)R^6)$$

Here definition of $^{\mu_1}$, $^{\mu_2}$, $^{\theta_1}$, $^{\theta_2}$, $^{\epsilon_0}$, and R are the same as those of section 1.1. $^{\alpha_1'}$ and $^{\alpha_2'}$ are the polarizability volumes of molecule 1 and molecule 2 respectively, obtained from DFT calculations using CAM-B3LYP functional with 6-311++g(d,p) basis set in the Gaussian 09 platform. The polarizability volume of CHL, CHM, CAM, and ARJ are 45.62, 53.37, 47.06, 50.66 Å³ respectively.

1.3. Induced dipole-induced dipole Interaction (Dispersion or London force):

The induced dipole-induced dipole interaction energy is given by

$$V(R) = -\frac{\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \alpha'_1 \alpha'_2}{R^6}$$

Here I_1 and I_2 are the first ionization potential of molecule 1 and molecule 2 respectively. The remaining parameters are the same as those of **section 1.1** and **1.2**. The first ionization potentials are obtained from DFT geometry optimization. The values are 7.96, 8.08, 7.99, 7.84 eV respectively for CHL, CHM, CAM, and ARJ. *Note:* The formulae are written for a pair of molecules. The actual calculation involves all pairwise combinations between the molecules present in the cluster. The total energy is normalized with respect to the number of molecules present in the cluster.

References:

- 1. Israelachvili, J. N. *Intermolecular and Surface Forces*. (Academic Press, 2011). doi:10.1016/C2009-0-21560-1
- 2. Maitland, G. C., Rigby, M., Smith, E. B. & Wakeham, W. A. *Intermolecular Forces: Their Origin and Determination*. (Clarendon Press, 1981).