Supporting Information

Understanding the Polaron Behavior in Cs₂CuSbCl₆ Halide Double Perovskite

Mohamed Ben Bechir. *. a and Sami Znaidia b

^a Laboratory of Spectroscopic and Optical Characterization of Materials (LaSCOM). Faculty of Sciences. University of Sfax. BP1171 – 3000 Sfax. Tunisia.

^b College of Sciences and Arts in Mahayel Asir. Department of Physics. King Khalid University. Abha. Saudi Arabia.

* Corresponding author. E-mail address: mohamedbenbechir@hotmail.com

Supplementary Figures

Fig. S1. Schematic picture of the solvothermal method to obtain Cs₂CuSbCl₆ single crystals.

Fig. S2. Frequency dependence of capacitance for $Cs_2CuSbCl_6$ at various temperature.

Fig. S3. Metal/ Cs₂CuSbCl₆ /metal band diagram demonstrating ion accumulation.

Supplementary Tables

Chemical element	% Atomic
Caesium (Cs)	22
Copper (Cu)	9
Antimony (Sb)	11
Chloride (Cl)	58

Table S1. Proportions of Chemical Elements in Cs₂CuSbCl₆ SCs.

Table S2. Thermal variation of parameters n_1 , n_2 and n_3 .

Temperature (K)	n_1	n_2	n3
273	0.95	0.27	0.62
283	0.93	0.18	0.60
293	0.90	0.22	0.59
303	0.87	0.21	0.56
313	0.82	0.23	0.53
323	0.76	0.19	0.47
333	0.70	0.21	0.45
343	0.64	0.23	0.43
353	0.57	0.24	0.42

at various temperatures		
Temperature	Value of 'm'	
273	-0.51	
283	-0.54	
293	-0.59	
303	-0.63	
313	-0.66	
323	-0.71	
333	-0.75	
343	-0.79	
353	-0.82	

Table S3. The values of 'm' were calculated based on the fitted plots of ϵ " (ω) obtained at various temperatures