# Supporting Information

# Structural Evolution of Water-in-Propylene Carbonate Mixtures Revealed by Experimental

## Raman Spectroscopy and Molecular Dynamics

Jessica B. Clark<sup>†</sup>, Tai Bowling-Charles<sup>†</sup>, Shamma Jabeen Proma<sup>†</sup>, Biswajit Biswas<sup>†</sup>, David T. Limmer<sup>‡</sup>,

Heather C. Allen $^{\dagger \ast}$ 

†Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210,

United States

‡ Department of Chemistry, University of California, Berkeley, California 94720, USA

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Kavli Energy NanoScience Institute, Berkeley, California 94720, USA

# Corresponding author

\* Heather C. Allen, <u>allen@chemistry.ohio-state.edu</u>

# **Table of Contents**

| SPECTRAL PREPROCESSING                          | 1 |
|-------------------------------------------------|---|
| RAMAN GAUSSIAN DECONVOLUTION                    | - |
| ATTENUATED TOTAL REFLECTANCE (ATR)-FTIR SPECTRA |   |
| RAMAN ESTER BAND ANALYSIS                       | - |
| ELECTRIC FIELD FLUCTUATION DECOMPOSITION12      |   |
| REFERENCES                                      |   |

#### Spectral Preprocessing

To account for small baseline shifts that occurred between replicates, the Raman spectra were aligned to a common baseline by taking the average of the final 50 intensity values (3750–3850 cm<sup>-1</sup>) in each spectrum where there are no spectral features. The average value was then subtracted from the intensity of the corresponding spectrum. Following this baseline alignment, the average of the replicates was acquired. The O-H stretching region of the Raman spectra following the baseline adjustment and averaging of replicates is depicted in Figure S1.



**Figure S1.** Raman spectra in the O-H stretching region for propylene carbonate with increasing water concentrations (red  $\chi_{water} = 0$  to violet  $\chi_{water} = 0.296$ ). Spectra are plotted as the average of two replicates following baseline adjustment and the standard deviation is plotted as shading.

Due to overlap with the intense C-H stretching modes that originate from PC, the O-H stretching region has a steeply sloped baseline and is convoluted with the C-H stretching mode from PC at 3220 cm<sup>-1</sup>. To deconvolute the spectral contributions of water and propylene carbonate in the O-H stretching region, an intensity normalization and subtraction of the pure propylene carbonate spectrum is performed. For the intensity normalization, a scaling factor, *f*, is calculated for each of the water concentrations studied. This is accomplished by dividing the intensity of the symmetric  $CH_2$  stretching peak (2938 cm<sup>-1</sup>) in the specific water + PC spectrum by the intensity (at the same peak position) in the pure PC spectrum. The entire pure PC spectrum was then scaled by the resulting ratio

and subtracted from the corresponding water + PC spectrum. This process is carried out mathematically for  $\chi_{mater} = 0.296$  as follows:

$$f = \left(\frac{I_{\chi = 0.296} (2938 \ cm^{-1})}{I_{\chi = 0} (2938 \ cm^{-1})}\right)$$
  
Corrected Spectrum =  $I_{\chi = 0.296} - (f \cdot I_{\chi = 0})$ 

Figure S2 demonstrates the result of scaling the pure PC spectrum to the intensity of the  $\chi_{water} = 0.296$ 

spectrum as well as the resulting difference ("corrected") spectrum.



**Figure S2.** Raman Spectrum of PC +  $\chi_{water} = 0.296$  (red), Pure PC ( $\chi_{water} = 0$ ) scaled by the calculated scaling factor, *f* (black), and the resulting spectrum obtained from their subtraction (blue). Subtraction carried out to remove spectral contributions of pure PC from the O-H stretching region.

The symmetric  $CH_2$  stretching peak was chosen as the reference point because it is the most intense peak in each of the individual spectra and because the scaling factor obtained using this peak is approximately the average scaling factor obtained when the same process was carried out using the symmetric  $CH_3$  and asymmetric  $CH_2$  stretching peaks as the reference point. After the intensity normalization and subtraction procedure, the spectral contributions from pure PC in the O-H stretching region have been removed. The resulting O-H stretching bands originating from water are plotted in the main article (Figure 1).

#### **Raman Gaussian Deconvolution**

To characterize the hydrogen bond structure of water as a function of its concentration in PC, the O-H stretching region was fit using a Gaussian deconvolution procedure in Origin Pro 2023. The deconvolution was carried out for 12 of the 25 total spectra, which includes the mole fractions  $\chi_{vater}$  = 0.007, 0.013, 0.024, 0.040, 0.062, 0.091, 0.117, 0.143, 0.190, 0.232, 0.270, and 0.296. The Fit Peaks (Pro) function in Origin Lab was used to parametrize and carry out the Gaussian fitting for the O-H stretching region between 3073 and 3847 cm<sup>-1</sup> in each of the 12 spectra. The first step in the parametrization process is defining a baseline for the curve by choosing anchor points along the baseline and an appropriate function to connect the anchor points, effectively fitting the baseline of the data. The wavenumber values 3077, 3096, 3814, and 3843 cm<sup>-1</sup> were chosen as anchor points for all spectra that were fit. These anchor points were then connected by a linear function. Following this, initial values for the Gaussian peak positions were chosen based on Origin Lab's built-in peak-finding function. Once the initialization parameters were set, the Gaussian fitting was carried out until a chisquared convergence tolerance of  $1 \times 10^{-6}$  was reached. All parameters of the fit were allowed to vary freely apart from the baseline and the peak position of the highest frequency Gaussian. The decision to set the position of the highest frequency Gaussian to a constant value was made after the  $\chi_{vater}$  = 0.143, 0.190, 0.232, 0.270, and 0.296 spectra were initially fit without fixing this parameter. In these fits, the peak position of this Gaussian remained approximately constant, only changing by  $\pm 0.2$  cm<sup>-1</sup>, which is much smaller that the resolution of the Raman instrument. Therefore, the position of this band was set as a fixed parameter for all subsequent fittings. The fit result of the highest water concentration spectrum was used to determine the constant value of the peak position to be 3642.85 cm<sup>-1</sup>. The lowest frequency band in the O-H stretching region did not have a high enough intensity to carry out the fitting (did not converge within 500 iterations) until the concentration  $\chi_{mater}$ = 0.091 was reached, therefore only the seven highest concentration spectra were able to be fit to four

total bands. The lower water concentration spectra are only fit to three bands. In Figure S3, the O-H stretching region of the Raman spectra are plotted with the fit result overlaid on the corresponding spectrum. Table S1 contains the converged parameters for all deconvoluted spectra.



**Figure S3.** Result of Gaussian fitting to the O-H stretching Raman spectra of PC as a function of increasing water concentration. Experimental spectra are plotted in black and calculated (fit) results are in color.

| from the Gaussian I | from the Gaussian fits of the O-H stretching region in the Raman spectra of the PC/water mixtures. |            |                |         |  |  |
|---------------------|----------------------------------------------------------------------------------------------------|------------|----------------|---------|--|--|
| Xwater              | Center (cm <sup>-1</sup> )                                                                         | Area       | Max. Intensity | FWHM    |  |  |
|                     |                                                                                                    | Peak 1     |                |         |  |  |
| 0.091               | 3331.549                                                                                           | 5871.516   | 24.767         | 222.712 |  |  |
| 0.117               | 3329.720                                                                                           | 10168.207  | 45.819         | 208.482 |  |  |
| 0.143               | 3313.961                                                                                           | 15339.471  | 72.718         | 198.169 |  |  |
| 0.190               | 3292.773                                                                                           | 25583.312  | 132.021        | 182.046 |  |  |
| 0.232               | 3274.531                                                                                           | 30960.326  | 184.085        | 158.000 |  |  |
| 0.270               | 3266.546                                                                                           | 40439.966  | 248.489        | 152.887 |  |  |
| 0.296               | 3261.367                                                                                           | 46670.106  | 295.524        | 148.359 |  |  |
|                     |                                                                                                    | Peak 2     |                |         |  |  |
| 0.007               | 3548.494                                                                                           | 2272.982   | 12.437         | 171.694 |  |  |
| 0.013               | 3543.662                                                                                           | 5779.104   | 42.771         | 126.935 |  |  |
| 0.024               | 3540.814                                                                                           | 12003.970  | 77.994         | 144.588 |  |  |
| 0.040               | 3537.119                                                                                           | 23089.416  | 132.327        | 163.920 |  |  |
| 0.062               | 3528.579                                                                                           | 40341.990  | 219.315        | 172.805 |  |  |
| 0.091               | 3526.457                                                                                           | 68049.167  | 397.876        | 160.673 |  |  |
| 0.117               | 3523.554                                                                                           | 96854.100  | 541.741        | 167.956 |  |  |
| 0.143               | 3520.025                                                                                           | 128609.003 | 681.587        | 177.263 |  |  |
| 0.190               | 3509.432                                                                                           | 182358.176 | 899.519        | 190.451 |  |  |
| 0.232               | 3495.311                                                                                           | 223349.016 | 1042.904       | 201.190 |  |  |
| 0.270               | 3485.685                                                                                           | 266098.194 | 1207.844       | 206.966 |  |  |
| 0.296               | 3480.473                                                                                           | 299576.228 | 1326.595       | 212.147 |  |  |
|                     |                                                                                                    | Peak 3     |                |         |  |  |
| 0.007               | 3548.535                                                                                           | 5596,160   | 83.026         | 63.320  |  |  |
| 0.013               | 3549.036                                                                                           | 9158.259   | 141.291        | 60.893  |  |  |
| 0.024               | 3548.803                                                                                           | 16421.794  | 250.442        | 61.600  |  |  |
| 0.040               | 3548.677                                                                                           | 25529.054  | 380.962        | 62.954  |  |  |
| 0.062               | 3548.473                                                                                           | 37362.355  | 534.077        | 65.720  |  |  |
| 0.091               | 3548.915                                                                                           | 42541.617  | 624.894        | 63.955  |  |  |
| 0.117               | 3548.901                                                                                           | 48777.053  | 700.712        | 65.395  |  |  |
| 0.143               | 3548.627                                                                                           | 54480.111  | 758.554        | 67.471  |  |  |
| 0.190               | 3549.084                                                                                           | 68665.483  | 878.296        | 73.446  |  |  |
| 0.232               | 3549.617                                                                                           | 89078.920  | 1024.946       | 81.647  |  |  |
| 0.270               | 3550.014                                                                                           | 105598.410 | 1134.446       | 87.446  |  |  |
| 0.296               | 3550.152                                                                                           | 115507.264 | 1194.283       | 90.859  |  |  |
|                     |                                                                                                    | Peak 4     |                |         |  |  |
| 0.007               | 3642.851                                                                                           | 869.162    | 11.494         | 71.036  |  |  |
| 0.013               | 3642.851                                                                                           | 2051.773   | 25.740         | 74.885  |  |  |
| 0.024               | 3642.851                                                                                           | 3372.969   | 42.166         | 75.148  |  |  |
| 0.040               | 3642.851                                                                                           | 4657.074   | 61.421         | 71.230  |  |  |
| 0.062               | 3642.851                                                                                           | 7091.936   | 98.528         | 67.620  |  |  |
| 0.091               | 3642.851                                                                                           | 11228.184  | 149.198        | 70.699  |  |  |
| 0.117               | 3642.851                                                                                           | 13517.129  | 185.393        | 68.495  |  |  |
| 0.143               | 3642.851                                                                                           | 14812.833  | 214.231        | 64.957  |  |  |
| 0.190               | 3642.851                                                                                           | 19628.678  | 295.670        | 62.366  |  |  |
| 0.232               | 3642.851                                                                                           | 25542.695  | 386.414        | 62.099  |  |  |
| 0.270               | 3642.851                                                                                           | 30208.874  | 458.577        | 61.886  |  |  |
| 0.296               | 3642.851                                                                                           | 32249.766  | 492.302        | 61.541  |  |  |

**Table S1.** Peak center (cm<sup>-1</sup>), area, intensity (arb. units), and full-width-half-max (FWHM) values obtained from the Gaussian fits of the O-H stretching region in the Raman spectra of the PC/water mixtures.

To aid in the assignment of the deconvoluted O-H stretching bands, isotopic dilution spectra (10% HOD in D<sub>2</sub>O) were deconvoluted in the same manner of the H<sub>2</sub>O spectra. The HOD spectrum for the highest D<sub>2</sub>O concentration is plotted in Figure S4 along with the deconvoluted Gaussian bands. Table S2 contains the converged parameters for the deconvoluted  $\chi_{nater} = 0.23$  spectrum.



**Figure S4.** Gaussian deconvolution results for the isotopic dilution experiment where  $\chi_{water} = 0.23$ . Experimental data is plotted in black circles and the fit plotted as a red solid line. Dashed lines represent Gaussian bands used to fit experimental spectra.

| Table S2. Peak center                                                                                   | er (cm <sup>-1</sup> ), are | a, intensi | ty (arb. units), and full- | -width-half-max (FWF | IM) values obtained |
|---------------------------------------------------------------------------------------------------------|-----------------------------|------------|----------------------------|----------------------|---------------------|
| from the Gaussian fitting of the O-H stretching region in the Raman spectra of the isotopically diluted |                             |            |                            |                      |                     |
| PC/D <sub>2</sub> O mixtures.                                                                           | 0                           |            | 0 0                        | *                    |                     |
|                                                                                                         |                             | 4          |                            |                      |                     |

| Peak | Center (cm <sup>-1</sup> ) | Area     | Max. Intensity | FWHM    |
|------|----------------------------|----------|----------------|---------|
| 2    | 3512.755                   | 6689.334 | 37.935         | 165.656 |
| 3    | 3587.795                   | 7074.990 | 65.350         | 101.707 |
| 4    | 3639.476                   | 1066.919 | 21.581         | 46.443  |

## Attenuated Total Reflectance (ATR)-FTIR Spectra

ATR-FTIR spectra were taken to complement the Raman spectra of dilute water in PC. The ATR-FTIR spectra of the O-H stretching region for a selection of concentrations matching those in the Raman spectra are plotted in Figure S5. The  $\chi_{nuter} = 0.013$  and 0.223 spectra were deconvoluted in the same manner as the Raman spectra. The results are plotted in Figure S6 to demonstrate the evolution of the deconvoluted bands with water concentration. Table S3 contains the converged parameters for the deconvoluted  $\chi_{nuter} = 0.013$  and 0.223 ATR-FTIR spectra.



**Figure S5.** O-H stretching region in the ATR-FTIR spectra of increasing concentrations of water in PC. The spectra are an average of two trials and the standard deviation is included as shading around the solid line.



**Figure S6.** Gaussian deconvolution of experimental ATR-FTIR O-H region for water concentrations  $\chi_{water} = 0.013$  (A) and 0.223 (B). Experimental (black) and fit (red) spectra are plotted with solid lines. Dashed lines represent Gaussian bands used to fit experimental spectra.

| <b>Table S3.</b> Peak center (cm <sup>-1</sup> ), area, intensity (arb. units), and full-width-half-max (FWHM) values obtained from the Gaussian fits of the O-H stretching region in the ATR-FTIR spectra of the PC/water mixtures. |                            |        |                |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|----------------|---------|--|
| Xwater                                                                                                                                                                                                                               | Center (cm <sup>-1</sup> ) | Area   | Max. Intensity | FWHM    |  |
|                                                                                                                                                                                                                                      |                            | Peak 1 |                |         |  |
| 0.013                                                                                                                                                                                                                                | 3282.312                   | 0.055  | 0.0003         | 156.755 |  |
| 0.223                                                                                                                                                                                                                                | 3256.119                   | 0.426  | 0.003          | 133.945 |  |
| Peak 2                                                                                                                                                                                                                               |                            |        |                |         |  |
| 0.013                                                                                                                                                                                                                                | 3533.883                   | 0.493  | 0.002          | 198.987 |  |
| 0.223                                                                                                                                                                                                                                | 3474.114                   | 3.033  | 0.013          | 218.946 |  |
| Peak 3                                                                                                                                                                                                                               |                            |        |                |         |  |
| 0.013                                                                                                                                                                                                                                | 3568.560                   | 0.449  | 0.005          | 78.881  |  |
| 0.223                                                                                                                                                                                                                                | 3576.849                   | 1.785  | 0.015          | 112.215 |  |
| Peak 4                                                                                                                                                                                                                               |                            |        |                |         |  |
| 0.013                                                                                                                                                                                                                                | 3641.142                   | 0.246  | 0.004          | 64.631  |  |
| 0.223                                                                                                                                                                                                                                | 3643.126                   | 0.609  | 0.009          | 61.600  |  |

### **Raman Ester Band Analysis**

The symmetric and asymmetric ester group stretching bands from PC are reported to occur at 959 and 1228 cm<sup>-1</sup>, respectively in Raman spectra.<sup>1</sup> Here, we observe these bands at 952.79 and 1224.31 cm<sup>-1</sup> in the VV polarized Raman spectrum of pure PC. These bands are analyzed in order to determine bulk PC structure as a function of water concentration. The Raman spectra showing the ester bands for the  $\chi_{water} = 0$  (pure PC) and  $\chi_{water} = 0.296$  solutions are plotted in Figure S7. Both the VV and VH polarized responses are included for determination of the non-coincidence effect (NCE). The NCEs for the symmetric ester band when  $\chi_{water} = 0$  and 0.296 are 0.39 and 0.32 cm<sup>-1</sup>, respectively. The NCEs for the asymmetric ester band when  $\chi_{water} = 0$  and 0.296 are -0.31 and -0.32 cm<sup>-1</sup>, respectively. Peak positions for the symmetric and asymmetric polarized bands were determined through Gaussian fitting and the results are included in Table S4.



**Figure S7.** Raman spectra of the symmetric and asymmetric ester stretching bands of PC for the  $\chi_{water} = 0$  (dashed lines) and  $\chi_{water} = 0.296$  solutions (solid lines). The VV (black) and VH (red) polarized spectra are both included. Gray reference lines are plotted at the peak positions of the symmetric (952.8 cm<sup>-1</sup>) and asymmetric (1224.3 cm<sup>-1</sup>) VV polarized ester bands in the  $\chi_{water} = 0$  spectrum.

| <b>I able S4.</b> Peak center (Cm <sup>-1</sup> ), area, intensity (arb. units), and full-width-half-max (FWHM) values obtained |                            |            |                |         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|----------------|---------|--|--|
| from the Gaussian fitting of the ester stretching bands in the Raman spectra of the PC/water mixtures.                          |                            |            |                |         |  |  |
| Spectrum                                                                                                                        | Center (cm <sup>-1</sup> ) | Area       | Max. Intensity | FWHM    |  |  |
| Symmetric Ester Band                                                                                                            |                            |            |                |         |  |  |
| $\chi_{mater} = 0$ (VV pol.)                                                                                                    | 952.791                    | 163119.432 | 6611.649       | 23.177  |  |  |
| $\chi_{water} = 0$ (VH pol.)                                                                                                    | 952.404                    | 24148.932  | 890.051        | 25.489  |  |  |
| $\chi_{water} = 0.296 \text{ (VV pol.)}$                                                                                        | 953.288                    | 152857.135 | 6161.320       | 23.307  |  |  |
| $\chi_{water} = 0.296 \text{ (VH pol.)}$                                                                                        | 952.971                    | 22265.168  | 818.978        | 25.540  |  |  |
| Asymmetric Ester Band                                                                                                           |                            |            |                |         |  |  |
| $\chi_{water} = 0$ (VV pol.)                                                                                                    | 1224.306                   | 41129.143  | 1673.639       | 23.086  |  |  |
| $\chi_{water} = 0$ (VH pol.)                                                                                                    | 1224.625                   | 26213.472  | 1060.907       | 23.212  |  |  |
| $\chi_{water} = 0.296 \text{ (VV pol.)}$                                                                                        | 1224.731                   | 35800.864  | 1463.143       | 22.987  |  |  |
| $\chi_{water} = 0.296$ (VH pol.)                                                                                                | 1225.048                   | 22665.846  | 925.767        | 23.0005 |  |  |

#### Electric field fluctuation decomposition

In the main text, we have used the distribution of electric fields along the O-H bond of a water molecular as a map to the Raman line shape. We have found that these distributions are naturally decomposed into two sub-populations depending on whether the tagged O-H bond is donating a hydrogen bond to another water molecule or not. Using the same geometric definition for a hydrogen bond as discussed in the main text, these decomposed distributions are shown in Figure S8 for a range of water concentrations.



**Figure S8.** Electric field distributions for water solutions with  $\chi_{water} = a$  0.04, b) 0.08, c) 0.12, d) 0.16, e) 0.19, and f) 0.22 computed from the molecular dynamics simulations discussed in the main text. Shaded regions highlight sub populations for O-H oscillators that are donating a hydrogen (blue) or not (red) to another water molecule.

## References

 Janz, G. J.; Ambrose, J.; Coutts, J. W.; Downey, J. R. Raman Spectrum of Propylene Carbonate. Spectrochim. Acta Part Mol. Spectrosc. 1979, 35 (2), 175–179. https://doi.org/10.1016/0584-8539(79)80181-6.