Supplementary Information: A Combined Inelastic Neutron Scattering and Simulation Study of the ³He@C₆₀ Endofullerene

Mohamed Aouane^{‡1}, Jeff Armstrong², Mark Walkey³, Gabriela Hoffman³, George R. Bacanu³, Richard J. Whitby³, Malcolm H. Levitt³, and Stéphane Rols¹

 ¹Institut Laue-Langevin, BP 156, 38042 Grenoble, France
²ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, United Kingdom
³School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
[‡]Current address: Same as affiliation 2.

1 4 He@C₆₀ INS Data:

As mentioned in the main text, measurements on both the ³He and ⁴He endofullerenes were performed. Figure 1 shows the resulting measurements on TOSCA for ⁴He@C₆₀ at 10 K. Due to the low sample mass and the low neutron scattering cross section of ⁴He compared to ³He, only the fundamental transition n = 0 to 1 could be observed for ⁴He at around 9 meV.

S. 1: The TOSCA measurement for ${}^{4}\text{He}@C_{60}$ at 10 K for the 135° detector bank. The feature marked with an asterisk corresponds to the fundamental translational mode of ${}^{4}\text{He}$.

2 Lennard-Jones Potential Energy Surface:

As mentioned in the main text, another way of describing the PES of the entrapped He atom is to approximate the C_{60} as a sphere and consider the 6-12 Lennard-Jones potential (equation 1) with parameters shown in table 1.

$$v(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$
(1)

Interaction	σ (Å)	ε (meV)
He-C	2.971	1.61

Table 1: Parameters for the 6-12 Lennard-Jones potential describing the interaction between He and C, taken from Pang and Brisse¹.

Plugging the parameters in table 1 into equation 1 and integrating it over a sphere of radius R, we obtain equation 2

$$V(r) = \frac{15}{Rr} \left[\frac{A}{2} \left[(r+R)^{-4} - (r-R)^{-4} \right] - \frac{B}{5} \left[(r+R)^{-10} - (r-R)^{-10} \right] \right]$$
(2)

Equation 2 is the result of approximating the C_{60} as a perfect sphere, where A = $4\varepsilon\sigma^6$, B = $4\varepsilon\sigma^{12}$ with *r* representing the displacement of the He atom from the centre of the sphere and R the radius of the sphere. For this approximation, we consider R = 3.547 ± 0.005 Å as determined from neutron diffraction².

S. 2: Visual comparison between the anharmonic oscillator PES, with parameters shown in the main text (dashed black line), and the Lennard-Jones spherical approximation with parameters shown in table 1 (solid red line).

As a point of comparison, figure 2 shows a comparison between the anharmonic oscillator PES described in the main text and the Lennard-Jones PES in the spherical approximation. As can be seen, the differences between the two PES' become more apparent as energy increases.

PANTHER	LJ PES	A.O PES	Transition
$12.13 {\pm} 0.02$	12.46	11.72	(0,0) to $(1,1)$
$25.31{\pm}0.03$	26.45	24.84	(0,0) to $(2,2)$
$27.25 {\pm} 0.08$	29.28	27.42	(0,0) to $(2,0)$

Table 2: Comparison between the experimental and simulated position in energy (in meV) of the transitions and their corresponding quantum transition for the anharmonic oscillator (A.O) and Lennard-Jones (LJ) potentials.

Table 2 shows a comparison of the experimentally features observed on PANTHER and the eigenvalues derived by both the anharmonic oscillator and Lennard-Jones potentials.

Figure 3 shows a comparison between the experimental data set measured on PANTHER for ³He@C₆₀ and a simulated one using the Lennard-Jones PES showing the discreancy between the two data sets proving that the anharmonic oscillator discussed in the main text is a better description of the non-bonded interaction between the entrapped ³He atom and the C₆₀ cage.

S. 3: Comparison between (a): the experimental PANTHER data for ${}^{3}\text{He}@C_{60}$ and (b): the simulated data using the Lennard-Jones PES shown in equation 2.

References

- L. Pang and F. Brisse, The Journal of Physical Chemistry, 1993, 97, 8562– 8563.
- [2] F. Leclercq, P. Damay, M. Foukani, P. Chieux, M. Bellissent-Funel, A. Rassat and C. Fabre, *Physical Review B*, 1993, **48**, 2748.