Supporting Information

Neural Network Atomistic Potentials for Global Energy Minima Search in Carbon Clusters

Nikolay V. Tkachenko,^{a,†,*} Anastasiia A. Tkachenko,^{b,†,*} Benjamin Nebgen,^c Sergei Tretiak,^c Alexander I. Boldyrev.^{a,*}

^a Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA;

^b Department of Computer Science, Utah State University, Logan, Utah 84322-0300, USA;

^c Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;

[†] *These authors contributed equally.*

Figure S1. Potential energy surface of carbon dimer calculated using ANI-1ccx and ANI-1x models. Shaded regions show the ensemble standard deviation.

Figure S2. Global minimum structures of C_n (n = 3-10) clusters according to the ANI-1ccx method with the introduced proximity restriction.

Figure S3. Global minimum structures of C_n (n = 3-10) clusters according to the ANI-nr method.

Figure S4. Number of connected structures with distinct energies for each method in case of undersampled PES (100 structures for each stoichiometry). Y-axis is in log-scale.

Figure S5. Global minimum structures of C_n (n = 3-10) clusters according to the PM7 method.

Figure S6. Lowest in energy cyclic structures of C_n (n = 3-10) clusters according to the ANI-1ccx (a) and ANI-nr (b) methods.

Figure S7. Optimized at PBE0/Def2-TZVPP level of theory geometries of lowest isomers of C_n (n = 3-6). The geometries obtained via reoptimization of ten initial guessed structures obtained by PBE0/def2-SVP, PM7, ANI-nr, and ANI-1ccx methods. The relative energies are given at CCSD(T)/def2-TZVPP//PBE0/def2-TZVPP level of theory. Relative energies in square brackets are calculated at PBE0/def2-TZVPP level. Number if imaginary frequencies (NIMAG) is given. Under each structure the method that provided the initial guess geometry is given.

Figure S8. Optimized at PBE0/Def2-TZVPP level of theory geometries of lowest isomers of C₇. The geometries obtained via reoptimization of ten initial guessed structures obtained by PBE0/def2-SVP, PM7, ANI-nr, and ANI-1ccx methods. The relative energies are given at CCSD(T)/def2-TZVPP//PBE0/def2-TZVPP level of theory. Relative energies in square brackets are calculated at PBE0/def2-TZVPP level. Number if imaginary frequencies (NIMAG) is given. Under each structure the method that provided the initial guess geometry is given.

Figure S9. Optimized at PBE0/Def2-TZVPP level of theory geometries of lowest isomers of C_8 . The geometries obtained via reoptimization of ten initial guessed structures obtained by PBE0/def2-SVP, PM7, ANI-nr, and ANI-1ccx methods. The relative energies are given at CCSD(T)/def2-TZVPP/PBE0/def2-TZVPP level of theory. Relative energies in square brackets are calculated at PBE0/def2-TZVPP level. Number if imaginary frequencies (NIMAG) is given. Under each structure the method that provided the initial guess geometry is given.

Figure S10. Optimized at PBE0/Def2-TZVPP level of theory geometries of lowest isomers of C₉. The geometries obtained via reoptimization of ten initial guessed structures obtained by PBE0/def2-SVP, PM7, ANI-nr, and ANI-1ccx methods. The relative energies are given at CCSD(T)/def2-TZVPP/PBE0/def2-TZVPP level of theory. Relative energies in square brackets are calculated at PBE0/def2-TZVPP level. Number if imaginary frequencies (NIMAG) is given. Under each structure the method that provided the initial guess geometry is given.

Figure S11. Optimized at PBE0/Def2-TZVPP level of theory geometries of lowest isomers of C_{10} . The geometries obtained via reoptimization of ten initial guessed structures obtained by PBE0/def2-SVP, PM7, ANI-nr, and ANI-1ccx methods. The relative energies are given at CCSD(T)/def2-TZVPP/PBE0/def2-TZVPP level of theory. Relative energies in square brackets are calculated at PBE0/def2-TZVPP level. Number if imaginary frequencies (NIMAG) is given. Under each structure the method that provided the initial guess geometry is given.

Figure S12. The lowest connected isomers of C_n (n = 3-6) clusters obtained via ANI-1ccx method.

Figure S13. The lowest connected isomers of C_n (n = 7-8) clusters obtained via ANI-1ccx method.

Figure S14. The lowest connected isomers of C_n (n = 9-10) clusters obtained via ANI-1ccx method.

Figure S15. The lowest connected isomers of C_n (n = 3-6) clusters obtained via ANI-nr method.

Figure S16. The lowest connected isomers of C_n (n = 7-8) clusters obtained via ANI-nr method.

Figure S17. The lowest connected isomers of C_n (n = 9-10) clusters obtained via ANI-nr method.

ON = 2.00 |e|

Figure S18. Chemical bonding pattern of the linear isomer of C₅ cluster obtained from AdNDP analysis.

Figure S19. Chemical bonding pattern of the linear isomer of C₇ cluster obtained from AdNDP analysis.

Figure S20. Chemical bonding pattern of the linear isomer of C₉ cluster obtained from AdNDP analysis.

Figure S21. Chemical bonding pattern of the cyclic isomer of C₄ cluster obtained from AdNDP analysis.

Figure S22. Chemical bonding pattern of the cyclic isomer of C₈ cluster obtained from AdNDP analysis.

Figure S23. Chemical bonding pattern of the cyclic isomer of C_{10} cluster obtained from AdNDP analysis.

Supplementary Tables

Stoichiometry	Linear isomer	Cyclic isomer	Relative energy
C_3	-113.8760004	-113.8366586	24.7
C_4	-151.8331203	-151.850678	11.0
C ₅	-189.9099439	-189.824336	53.7
C_6	-227.8820169	-227.915769	21.2
C_7	-265.9425417	-265.925487	10.7
C_8	-303.923935	-303.947118	14.5
C ₉	-341.9755858	-341.965302	6.5
C ₁₀	-379.9632593	-380.078646	72.4

Table S1. Absolute [a.u.] and relative [kcal/mol] energies for linear and cyclic singlet-state isomers obtained at DLPNO-CCSD(T) level of theory with three-point extrapolation to CBS.

Table S2. Relative [kcal/mol] energies including ZPE corrections for linear and cyclic isomers at different spin-states obtained at PBE0/Def2-TZVPP level of theory.

Stoichiometry	Cyclic isomer (S=0)	Linear isomer (S=0)	Linear isomer (S=1)
C_4	7.1	20.6	0.0
C_6	0.0	21.1	5.2
C ₈	6.7	13.0	0.0
C_{10}	0.0	69.5	58.4