Supporting information for

Optimizing the NRR activity of single and double boron atom catalysts using suitable support: A first principles investigation

Anjumun Rasool^a, Insha Anis^a, Sajad Ahmad Bhat^a and Manzoor Ahmad Dar^{a*}

^a Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and

Kashmir-192122, India

Table of contents

1.	Fig. S1. Free energy profile for NRR on B_1 @graphene along alternating, distal and
	enzymatic pathway
2.	Fig. S2. Free energy profile for NRR on $B_1@GaN$, $B_1@MoS_2$, and $B_1@g-C_3N_4$ along
_	alternating and distal pathway
3.	Fig. S3. Free energy profile for NRR on $B_2@$ graphyne and $B_2@MoS_2$ catalysts along
	alternating and distal pathway
4.	Fig. S4. Free energy profile for NRR on $B_2(a)$ graphene catalyst along alternating, distal and
_	$ \begin{array}{c} \text{enzymatic.} \\ \text{SS} \\ \text{E} \\ \text{C} $
5.	Fig. S5. Free energy profile for NRR on $B_1(a)$ graphene, $B_2(a)$ graphene, $B_1(a)$ g- C_3N_4 and
	$B_2(a)g-C_3N_4$ catalyst along consecutive pathway
6.	Fig. S6. Optimized truncated side views of NRR intermediates on $B_1(a)$ GaN and $B_1(a)$ MoS ₂
	catalysts along alternating and distal pathways. Green and red coloured arrows indicate
7	Eise S7 Optimized transitional side sizes of NDP intermediates on D @s C N and
7.	Fig. 57. Optimized truncated side views of NKR intermediates on $B_1(\underline{w}g-C_3N_4)$ and $B_1(\underline{w}g-C_3N_4)$ and
	B_1 (wgraphene catarysts along alternating, distal and enzymatic pathways. Green red and even coloured arrows indicate alternating and distal nathway respectively.
8	Fig. S8 Optimized truncated side views of NRR intermediates on B.@graphyne and
0.	$B_2 @MoS_2$ catalyst along alternating and distal nathways $S7$
9.	Fig. S9. Optimized truncated side views of NRR on $B_2@g-C_3N_4$ catalyst along enzymatic
	pathway
10.	Fig. S10. Optimized truncated side views of NRR intermediates on $B_2(a)$ graphene catalyst
	along alternating, distal and enzymatic pathways
11.	Fig. S11. Optimized truncated side views of NRR intermediates on (a)B ₁ @graphene
	(b) $B_2@$ graphene (c) $B_1@g-C_3N_4$ and (d) $B_2@g-C_3N_4$ catalysts along consecutive
	pathway
12.	Fig. S12. Variations of energy versus the AIMD simulation time for $B_2@g$ -
	C ₃ N ₄ S9
13.	Fig. S13. Dissociation barrier for the double boron atom catalysts supported on the g-
	C ₃ N ₄ monolayer
14.	Fig. S14. Calculated adsorption free energies of N_2 molecule and H atom on the single and double boron atom adsorbed on GaN, graphene, g-C ₃ N ₄ , MoS ₂ and graphyne

16.	Table	S2.	Energy,	ZPE,	TS, C	3 and	ΔG	of reaction	steps	of NRR	on	B ₁ @graphene	and
	$B_1@g$	$-C_3N$	V4 along a	alterna	ting,	distal	and e	enzymatic p	oathwa	ıy		S11 and S	12

- 20. Table S6. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on B₁@graphene, B₂@graphene, B₁@g-C₃N₄ and B₂@g-C₃N catalysts along consecutive pathway..S15 and S16

Fig. S1. Free energy profile for NRR on B_1 (a) *graphene along alternating, distal and enzymatic pathways.*

Fig. S2. Free energy profile for NRR on $B_1@GaN$, $B_1@MoS_2$, and $B_1@g-C_3N_4$ along alternating and distal pathways.

Fig. S3. Free energy profile for NRR on $B_2@$ graphyne and $B_{2@}MoS_2$ catalysts along alternating and distal pathways.

Fig. S4. Free energy profile for NRR on B_2 @graphene catalyst along alternating, distal and enzymatic pathways.

Fig. S5. Free energy profile for NRR on B_1 @graphene, B_2 @graphene, B_1 @g- C_3N_4 and B_2 @g- C_3N_4 catalyst along Consecutive pathway.

Fig. S6. Truncated side views of the optimized NRR intermediates on $B_1@GaN$ and $B_1@MoS_2$ catalysts along alternating and distal pathways. Green and red coloured arrows indicate alternating and distal pathway respectively.

Fig. S7. Truncated side views of the optimized NRR intermediates on $B_1@g-C_3N_4$ and $B_1@graphene$ catalysts along alternating, distal and enzymatic pathways. Green, red and cyan coloured arrows indicate alternating, distal and enzymatic pathway respectively.

Fig. S8. Truncated side views of the optimized NRR intermediates on B_2 @graphyne and B_2 @MoS₂ catalyst s along alternating and distal pathways. Green and red coloured arrows indicate alternating and distal pathway respectively.

Fig. S9. Truncated side views of the optimized NRR intermediates on $B_2@g-C_3N_4$ catalyst along enzymatic pathway. Cyan coloured arrow indicates enzymatic pathway.

Fig. S10. Truncated side views of the optimized NRR intermediates on B_2 @graphene catalyst along alternating, distal and enzymatic pathways. Green, red and cyan coloured arrows indicate alternating, distal, and enzymatic pathway respectively.

Fig. S11. Truncated side views of the optimized NRR intermediates on (a) B_1 @graphene (b) B_2 @graphene (c) B_1 @g- C_3N_4 and (d) B_2 @g- C_3N_4 catalysts along consecutive pathway.

Fig. S12. Dissociation barrier for the double boron atom catalysts supported on the $g-C_3N_4$ monolayer as obtained from nudged elastic band calculations.

Fig. S13. Variations of energy versus the AIMD simulation time for $B_2@g-C_3N_4$ at 350 K.

Fig. S14. Calculated adsorption free energies of N_2 molecule and H atom on the single and double boron atom adsorbed on GaN, graphene, $g-C_3N_4$, MoS_2 and graphyne supports.

Table S1. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on $B_1@GaN$ and $B_1@MoS_2$ along alternating and distal pathway.

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-310.65	0.21	0.15	-310.59	-0.61
*NNH	-314.24	0.52	0.16	-313.88	-0.62
C*NHNH	-318.13	0.84	0.16	-317.44	-0.90
*NHNH ₂	-323.10	1.20	0.13	-322.03	-2.21
*NH ₂ NH ₂	-327.25	1.37	0.17	-326.05	-2.94
*NH ₂	-311.97	0.73	0.09	-311.33	-3.73
*NH ₃	-313.37	1.05	0.11	-312.43	-1.55

Alternating NRR pathway on B₁@GaN

Distal NRR pathway on B₁@GaN

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-310.65	0.21	0.15	-310.59	-0.61
*NNH	-314.24	0.52	0.16	-313.88	-0.62
*NNH ₂	-317.76	0.83	0.16	-317.09	-0.55
*N	-303.65	0.12	0.03	-303.57	-2.55
*NH	-306.95	0.37	0.12	-306.70	-2.39
*NH ₂	-311.97	0.73	0.09	-311.33	-3.73
*NH ₃	-313.37	1.05	0.11	-312.43	-1.55

Alternating pathway on B₁@MoS₂

Reaction Energy 2	ZPE	TS	G	ΔG
-------------------	-----	----	---	----

step					
*N ₂	-579.91	0.22	0.13	-579.82	-0.01
*NNH	-583.41	0.52	0.14	-583.03	0.07
*NHNH	-587.28	0.85	0.14	-586.56	-0.18
*NHNH ₂	-592.06	1.18	0.18	-591.01	-1.35
*NH ₂ NH ₂	-594.60	1.53	0.17	-593.24	-0.29
*NH ₂	-581.12	0.74	0.07	-580.46	-3.03
*NH ₃	-583.69	1.09	0.09	-582.69	-1.97
*NH ₃	-583.69	1.09	0.09	-582.69	-1.97

Distal pathway on B₁@MoS₂

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-579.91	0.22	0.13	-579.82	-0.01
*NNH	-583.41	0.52	0.14	-583.03	0.07
*NNH ₂	-587.23	0.57	0.09	-586.76	-0.38
*N	-571.60	0.08	0.09	-571.60	-0.74
*NH	-576.62	0.28	0.002	-576.35	-2.20
*NH ₂	-581.12	0.74	0.07	-580.46	-3.02
*NH ₃	-583.69	1.09	0.09	-582.69	-1.97

Table S2. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on B₁@graphene and B₁@g-C₃N₄ along alternating, distal and enzymatic pathway.

Alternating NRR pathway on B₁@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-483.26	0.21	0.15	-483.20	-1.41
*NNH	-487.19	0.52	0.15	-486.82	-1.76
*NHNH	-490.23	0.82	0.17	-489.58	-1.23
*NHNH ₂	-495.31	1.18	0.21	-494.34	-2.71
*NH ₂ NH ₂	-497.36	1.51	0.14	-495.99	-1.07
*NH ₂	-484.39	0.73	0.09	-483.75	-4.35
*NH ₃	-486.46	1.07	0.10	-485.49	-2.80
D1 . 1 D .1					

Distal Pathway on B₁@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-483.26	0.21	0.15	-483.20	-1.41
*NNH	-487.19	0.52	0.15	-486.82	-1.76
*NNH ₂	-491.36	0.80	0.15	-490.70	-2.35
*N	-474.79	0.08	0.09	-474.79	-1.96
*NH	-480.48	0.38	0.10	-480.19	-4.07
*NH ₂	-484.39	0.73	0.09	-483.75	-4.35
*NH ₃	-486.46	1.07	0.10	-485.49	-2.80

Enzymatic pathway on B₁@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-482.99	0.20	0.13	-482.92	-1.14
*NNH	-486.61	0.47	0.15	-486.29	-1.22
*NHNH	-491.40	0.81	0.16	-490.76	-2.41
*NHNH ₂	-495.01	1.18	0.14	-493.97	-2.33
*NH ₂ NH ₂	-502.73	1.45	0.18	-501.46	-6.54
*NH ₂	-484.40	0.73	0.09	-483.75	-4.35
*NH ₃	-486.46	1.06	0.11	-485.50	-2.82

Alternating pathway on B₁@g-C₃N₄

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-497.56	0.23	0.11	-497.44	-2.63
*NNH	-500.92	0.51	0.13	-500.54	-2.45
*NHNH	-505.25	0.86	0.11	-504.50	-3.13
*NHNH ₂	-509.99	1.20	0.12	-508.91	-4.25
*NH ₂ NH ₂	-512.68	1.52	0.12	-511.28	-3.33
*NH ₂	-499.14	0.74	0.06	-498.45	-6.03
*NH ₃	-502.06	1.04	0.06	-501.08	-5.38

Distal pathway on B₁@g-C₃N₄

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-497.56	0.23	0.11	-497.44	-2.63
*NNH	-500.92	0.51	0.13	-500.54	-2.45
*NNH ₂					-3.35
	-505.44	0.85	0.13	-504.72	
*N	-488.26	0.084	0.06	-488.23	-2.38
*NH	-494.03	0.39	0.06	-493.69	-4.55
*NH ₂	-499.14	0.75	0.06	-498.45	-6.03
*NH ₃	-502.06	1.04	0.06	-501.08	-5.38

Enzymatic pathway on B₁@g-C₃N₄

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-497.42	0.21	0.10	-497.30	-2.50
*NNH	-500.50	0.48	0.12	-500.14	-2.05
*NHNH	-505.41	0.85	0.10	-504.66	-3.29
*NHNH ₂	-509.24	1.19	0.11	-508.17	-3.51
*NH ₂ NH ₂	-515.37	1.46	0.15	-514.06	-6.12
*NH ₂	-499.14	0.74	0.06	-498.45	-6.03
*NH ₃	-502.05	1.04	0.06	-501.08	-5.37

Table S3. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on B₂@MoS₂ and B₂@graphyne along alternating, and distal pathway.

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-585.48	0.22	0.151758	-585.41	-2.07
*NNH	-588.72	0.49	0.183362	-588.41	-1.79
*NHNH	-592.13	0.85	0.18366	-591.47	-1.56
*NHNH ₂	-596.68	1.16	0.215264	-595.74	-2.55
*NH ₂ NH ₂	-599.70	1.53	0.196183	-598.37	-1.89
*NH ₂	-585.79	0.69	0.145497	-585.24	-4.28
*NH ₃	-588.65	1.07	0.121049	-587.70	-3.45

Alternating pathway on B₂@MoS₂

Distal pathway on B₂@MoS₂

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-585.48	0.22	0.15	-585.41	-2.07
*NNH	-588.72	0.49	0.18	-588.41	-1.79
*NNH ₂	-592.80	0.83	0.14	-592.11	-2.20
*N	-575.93	0.08	0.10	-575.95	-1.55
*NH	-581.75	0.38	0.10	-581.48	-3.80
*NH ₂	-585.79	0.69	0.15	-585.24	-4.28
*NH ₃	-588.65	1.07	0.12	-587.70	-3.45

Alternating pathway on B₂@graphyne

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-442.16	0.23	0.14	-442.07	-0.66
*NNH	-444.91	0.52	0.15	-444.55	0.15
*NHNH	-449.12	0.88	0.14	-448.38	-0.40
*NHNH ₂	-453.51	1.18	0.18	-452.52	-1.25
*NH ₂ NH ₂	-456.88	1.53	0.20	-455.55	-1.00
*NH ₂	-442.56	0.74	0.08	-441.89	-2.86
*NH ₃	-445.94	1.07	0.15	-444.98	-2.67

Distal pathway on B₂@graphyne

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-442.16	0.23	0.14	-442.07	-0.66
*NNH	-444.91	0.52	0.15	-444.55	0.15
*NNH ₂	-449.13	0.85	0.14	-448.13	-0.15
*N	-432.01	0.08	0.08	-431.85	0.62
*NH	-438.58	0.38	0.10	-438.10	-2.35
*NH ₂	-442.56	0.74	0.08	-441.89	-2.86
*NH ₃	-445.94	1.07	0.11	-444.98	-2.67

Table S4. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on $B_2@g-C_3N_4$ along Enzymatic pathway.

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-504.25	0.22	0.07	-504.11	-1.60
*NNH	-508.43	0.54	0.08	-507.97	-2.18
*NHNH	-512.90	0.86	0.08	-512.12	-3.04
*NHNH ₂	-516.59	1.21	0.10	-515.48	-3.12
*NH ₂ NH ₂	-522.07	1.45	0.14	-520.75	-5.11
*NH ₂	-505.59	0.75	0.05	-504.88	-4.75
*NH ₃	-508.51	0.95	0.27	-507.83	-4.42

Enzymatic pathway on B₂@g-C₃N₄

Table S5. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on B₂@graphene along alternating, distal and enzymatic pathway.

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-488.76	0.22	0.09	-488.63	-2.29
*NNH	-492.28	0.50	0.17	-491.95	-2.32
*NHNH	-495.58	0.84	0.18	-494.91	-2.00
*NHNH ₂	-500.06	1.16	0.21	-499.10	-2.90
*NH ₂ NH ₂	-502.57	1.51	0.19	-501.25	-1.76
*NH ₂	-489.20	0.68	0.10	-488.62	-4.65
*NH ₃	-491.45	1.07	0.10	-490.48	-3.23

Alternating pathway on B₂@graphene

Distal pathway on B₂@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-488.76	0.22	0.09	-488.63	-2.29
*NNH	-492.28	0.50	0.17	-491.95	-2.32
*NNH ₂	-496.68	0.85	0.18	-496.01	-3.10
*N	-479.81	0.08	0.11	-479.85	-2.45
*NH	-485.49	0.38	0.09	-485.20	-4.52
*NH ₂	-489.20	0.68	0.10	-488.62	-4.65
*NH ₃	-491.45	1.07	0.10	-490.48	-3.23

Enzymatic pathway on B₂@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-488.36	0.20	0.14	-488.31	-1.96
*NNH	-491.63	0.48	0.15	-491.31	-1.68
*NHNH	-496.33	0.82	0.15	-495.68	-2.75
*NHNH ₂	-499.91	1.16	0.20	-499.05	-2.85
*NH ₂ NH ₂	-507.35	1.44	0.19	-506.10	-6.62
*NH ₂	-489.21	0.70	0.12	-488.63	-4.66
*NH ₃	-491.10	1.05	0.14	-490.19	-2.94

Table S6. Energy, ZPE, TS, G and ΔG of reaction steps of NRR on B₁@graphene, B2@graphene, B1@g-C3N4 and B2@g-C3N4 catalysts along consecutive pathway.

Consecutive pathway on B₁@graphene

Reaction	Energy	ZPE	TS	G	ΔG
*N	482.00	0.20	0.12	182.02	1 1 /
· 1N2	-482.99	0.20	0.15	-482.92	-1.14
*NNH	-486.61	0.47	0.15	-486.29	-1.22
*NNH ₂	-491.28	0.85	0.15	-490.57	-2.22
*N	-474.80	0.08	0.09	-474.81	-1.97
*NH	-480.47	0.38	0.10	-480.18	-4.07
*NH ₂	-484.40	0.73	0.09	-483.75	-4.35
*NH ₃	-486.46	1.06	0.11	-485.50	-2.82

Consecutive pathway on B₂@graphene

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-488.36	0.20	0.14	-488.31	-1.96
*NNH	-491.63	0.48	0.15	-491.31	-1.68
*NNH ₂	-496.12	0.85	0.16	-495.43	-2.52
*N	-479.82	0.08	0.11	-479.85	-2.45
*NH	-485.49	0.38	0.09	-485.20	-4.52
*NH ₂	-489.21	0.70	0.12	-488.63	-4.66
*NH ₃	-491.10	1.05	0.14	-490.19	-2.94

Consecutive pathway on B₁@g-C₃N₄

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-497.42	0.21	0.10	-497.30	-2.50
*NNH	-500.50	0.48	0.12	-500.14	-2.05
*NNH ₂	-504.37	0.84	0.11	-503.64	-2.26
*N	-488.12	0.08	0.07	-488.11	-2.25
*NH	-494.05	0.40	0.06	-493.71	-4.57
*NH ₂	-499.14	0.74	0.06	-498.45	-6.03
*NH ₃	-502.05	1.04	0.06	-501.08	-5.37

Reaction	Energy	ZPE	TS	G	ΔG
step					
*N ₂	-504.25	0.22	0.07	-504.11	-1.60
*NNH	-508.43	0.54	0.08	-507.97	-2.18
*NNH ₂	-511.78	0.87	0.09	-511.00	-1.92
*N	-498.57	0.14	0.02	-498.45	-4.89
*NH	-502.75	0.45	0.02	-502.32	-5.47
*NH ₂	-505.59	0.75	0.05	-504.88	-4.75
*NH ₃	-508.51	0.95	0.27	-507.83	-4.42

Consecutive pathway on B₂@g-C₃N₄