Supporting Information for:

Gas-Phase Formation of Glycolonitrile in the Interstellar Medium

Luis Guerrero-Méndez,^a Anxo Lema-Saavedra,^b Elena Jiménez,^{c,d} Antonio Fernández-Ramos,*^{a,b} and Emilio Martínez-Núñez*^a

^aDepartamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain. E-mail: <u>gf.ramos@usc.es</u>, <u>emilio.nunez@usc.es</u>

^bCentro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain

^cDepartamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1b, 13071, Ciudad Real, Spain

^dInstituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain

Fig. S1 Product abundances as a function of number of iterations	S3
Fig. S2 Additional CN+ CH ₂ OH pathways	S4
Fig. S3 Additional OH + CH ₂ NC pathway	S5
Fig. S4 Additional 3-step HCO + CH ₂ N pathways.	S6
Fig. S5 Additional longer HCO + CH ₂ N pathways	S7
Fig. S6 Additional radical-molecule pathway	S8
Table S1	
Rate coefficients for the OH+CH ₂ CN \rightarrow HNC+CH ₂ O reaction	S9
Table S2	
Rate coefficients for the OH+CH ₂ CNH \rightarrow GLN+H reaction	S9

Fig. S1 Product abundances as a function of number of iterations obtained from the KMC simulations for GLN and GLN-H, using an excitation energy of 250 kcal/mol. The Level1-calculated energies and vibrational frequencies are employed in the calculations of the RRKM rate coefficients, and barrierless reactions are not included.

The relative energies depicted in Figures S2-S6 are referenced to the initial geometry utilized for the AutoMeKin calculations of the GLN and GLN-H systems.

Fig. S2 Additional DFT-computed energy profiles for the barrierless formation of GLN from CN+ CH_2OH .

Fig. S3 Additional DFTcomputed energy profile for the barrierless formation of GLN from OH + CH₂NC (OH-II pathway).

Fig. S4 Additional DFT-computed energy profiles for the barrierless formation of GLN from HCO + CH₂N. Pathways involving 3 elementary steps are displayed.

Fig. S5 Additional DFT-computed energy profiles for the barrierless formation of GLN from HCO + CH₂N. Pathways involving 4 elementary steps are displayed.

Fig. S6 Additional DFT-computed energy profile for the barrierless (radical-molecule) formation of GLN+H.

T/K	k1	ka.	k ^{CUS}
171	K1	κ ₂	K
10	1.15E-09	2.90E+243	1.15E-09
20	1.02E-09	5.57E+115	1.02E-09
30	9.55E-10	1.15E+73	9.55E-10
40	9.11E-10	4.60E+51	9.11E-10
50	8.78E-10	6.19E+38	8.78E-10
60	8.51E-10	1.56E+30	8.51E-10
70	8.30E-10	1.09E+24	8.30E-10
80	8.11E-10	2.58E+19	8.11E-10
90	7.96E-10	6.45E+15	7.96E-10
100	7.82E-10	8.39E+12	7.82E-10
110	7.69E-10	3.64E+10	7.69E-10
120	7.58E-10	3.89E+08	7.58E-10
130	7.48E-10	8.34E+06	7.48E-10
140	7.39E-10	3.09E+05	7.39E-10
150	7.31E-10	1.77E+04	7.31E-10

Table S1: Rate coefficients (in cm³ molecule⁻¹ s⁻¹) for the OH+CH₂CN→HNC+CH₂O reaction

Table S2: Rate coefficients (in cm³ molecule⁻¹ s⁻¹) for the OH+CH₂CNH \rightarrow GLN+H reaction

<i>Т/</i> К	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ^{cus}
10	6.61E-10	5.79E+16	6.61E-10
20	5.89E-10	3.16E+02	5.89E-10
30	5.51E-10	4.29E-03	5.51E-10
40	5.25E-10	1.40E-05	5.25E-10
50	5.06E-10	4.26E-07	5.05E-10
60	4.91E-10	4.01E-08	4.85E-10
70	4.78E-10	7.31E-09	4.49E-10
80	4.68E-10	2.02E-09	3.80E-10
90	4.59E-10	7.41E-10	2.83E-10
100	4.51E-10	3.32E-10	1.91E-10
110	4.43E-10	1.73E-10	1.24E-10
120	4.37E-10	1.00E-10	8.15E-11
130	4.31E-10	6.35E-11	5.53E-11
140	4.26E-10	4.30E-11	3.91E-11
150	4.21E-10	3.09E-11	2.88E-11