Supplementary Material

Oxo transition metal anchored on C_3N_4 with constructing high-activity bifunctional electrocatalyst for rechargeable

metal-air batteries

Yahui Li^a, Xiuyun Zhao^b, Xin Chen^{*a}

 ^a Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
^b Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland

^{*} Corresponding author.

E-mail address: chenxin830107@pku.edu.cn

Fig. S1. FPMD of (a)Ti₂@C₃N₄, (b)V₂@C₃N₄, (c)Cr₂@C₃N₄, (d)Mn₂@C₃N₄, (e)Fe₂@C₃N₄, (f)Co₂@C₃N₄, (g)Cu₂@C₃N₄, and (h)Zn₂@C₃N₄.

Fig. S2. Configurations of (a) *O and (b) *OH adsorbed at β site on Zn₂@C₃N₄.

Fig. S3. Scaling relationships of ΔG_{*OH} with ΔG_{*OOH} and ΔG_{*O} at β site on M₂@C₃N₄.

g. S4 (a) FPMD of *OOH, *O, and *OH at α site on Ni₂@C₃N₄. (b) DOS of *OOH, *O, and *OH at α site on Ni₂@C₃N₄. O-p orbitals represents the p orbital of O atom on *OOH, *O, or *OH directly connected to Ni(α) for Ni₂@C₃N₄.

Fig. S5. Relationship of $\Delta G_{\text{species}}$ with (a) the φ_d , (b) φ_{valence} , (c) \mathcal{O}_d , (d) $\mathcal{O}_{\text{valance}}$, (e) Ψ_1 , (f) Ψ_2 , (g) Ψ_3 , and (h) Ψ_4 at α site β site on M₂@C₃N₄.

Fig. S6. (a) $\varphi_{valence}$ and (b) Ψ_3 versus bifunctional index at β site on M₂@C₃N₄.

Bonds	ICOHP (eV)
Cu(a)–O	-1.31
Cu(β)−O	-1.40
$Cu(\alpha)$ –N1	-1.59
$Cu(\alpha)$ –N2	-2.65
$Cu(\beta)$ –N3	-0.67
$Cu(\beta)$ –N4	-2.04

Table S1 ICOHP of $Cu(\alpha)$ –O, $Cu(\beta)$ –O, $Cu(\alpha)$ –N1, $Cu(\alpha)$ –N2, $Cu(\beta)$ –N3, $Cu(\beta)$ –N4 in $Cu_2@C_3N_4$.

		end-on	side-on
Ti ₂ @C ₃ N ₄	a site	-2.03	-3.48
	β site	-2.45	-2.45
$V_2 @C_3 N_4$	a site	-2.45	-3.33
	β site	-2.84	-2.24
Cr ₂ @C ₃ N ₄	a site	-1.75	-2.44
	β site	-1.40	-1.98
$Mn_2@C_3N_4$	α site	-1.56	-1.56
	β site	-1.08	-1.08
Fe ₂ @C ₃ N ₄	a site	-0.35	-1.24
	β site	-0.53	-0.97
Co ₂ @C ₃ N ₄	a site	-0.80	-1.32
	β site	-0.84	-0.84
Ni ₂ @C ₃ N ₄	a site	-0.10	-0.58
	β site	-0.54	-0.68
$Cu_2@C_3N_4$	a site	-0.53	-0.53
	β site	-0.33	-0.37
$Zn_2@C_3N_4$	a site		-0.42
	β site		-0.35

Table S2 Adsorption energy (E_{ads} , eV) of the O₂ molecule on M₂@C₃N₄.