Electronic Supplementary Information (ESI)

Physicochemical Insights into Semiconductor Properties of a Semitransparent Tantalum Nitride Photoanode for Solar Water Splitting

Tomohiro Higashi,^{*a} Hiroshi Nishiyama,^b Yuriy Pihosh,^b Kaisei Wakishima,^c Yudai Kawase,^d Yutaka Sasaki,^d Akira Nagaoka,^{c,e} Kenji Yoshino,^c Kazuhiro Takanabe,^d and Kazunari Domen^{*b,f}

^a Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-kibanadainishi, Miyazaki, 889-2192, Japan.

^b Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan.

^c Electrical and Electronic Engineering Program, Faculty of Engineering, University of Miyazak, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan

^d Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

^e Research Center for Sustainable Energy & Environmental Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan

^f Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8533, Japan

*E-mails: domen@chemsys.t.u-tokyo.ac.jp , t_higashi@cc.miyazaki-u.ac.jp

Figure S1. Schematic illustration of the preparation of NiFeO_x/Ta₃N₅/SiO₂ thin films.

Figure S2. Fabrication process of Ta₃N₅ thin film on double-side polished quartz insulating substrates (Ta₃N₅/SiO₂). (a) Schematic depiction of RF magnetron sputtering process for the preparation of the precursor films on SiO₂ substrate. (b) schematic illustration of nitridation furnace under NH₃/N₂ mixed gas flow with the ratio of NH₃ : N₂ = 100 sccm : 100 sccm. (c) Temperature program for nitridation reaction under different nitridation temperatures (*T*) in the range from 725 °C to 850 °C.

Figure S3. X-ray diffraction (XRD) patterns of Ta₃N₅/SiO₂ thin films prepared through the nitridation process with different temperatures (*T*) of 725, 750, 775, 800, 825, and 850 °C. The XRD patterns of all Ta₃N₅/SiO₂ samples can be assigned to a single phase of the monoclinic Ta₃N₅ material.

Figure S4. (a) Surface modification with NiFeO_x electrocatalyst using a drop-casting method and thermal annealing on Ta_3N_5/SiO_2 thin film.¹ (b) Schematic and (c) photograph of NiFeO_x/Ta₃N₅/SiO₂ semitransparent photoanodes employed in a (d) three-electrode configuration for the photoelectrochemical (PEC) measurements.

Table S1. The properties of $Nir CO_x/1a_3N_3/SiO_2$ unit mins.						
Nitridation temperature (°C)	$J { m at} 1.23 { m V_{RHE}} { m (mA \ cm^{-2})}$	Eon (VRHE)	Maximum HC-STH (%)	Potential of maximum HC- STH (V _{RHE})		
725	3.0	0.65	0.45	0.95		
750	4.8	0.65	0.77	0.94		
775	5.9	0.65	1.03	0.94		
800	3.1	0.65	0.50	0.95		
825	2.5	0.65	0.41	0.95		
850	1.5	0.72	0.13	0.95		

Table S1. PEC properties of NiFeO_x/Ta₃N₅/SiO₂ thin films.

Figure S5. Mott-Schottky plots obtained from bare-Ta₃N₅/SiO₂ photoanodes at a potential modulation frequency of 1 kHz under dark conditions in 0.2 M potassium phosphate aqueous solution electrolyte (pH of 13, adjusted by KOH). The ac amplitude was 10 mV_{rms}. The carrier concentrations (N_d) of the optimized Ta₃N₅/SiO₂ (open circle colored in red) and the non-optimized Ta₃N₅/SiO₂ (open square colored in blue) were calculated to be 1.0×10^{20} cm⁻³ and 1.8×10^{20} cm⁻³, respectively. To calculate the N_d values, the slope ranging from 0.8 V_{RHE} to 0.3 V_{RHE} (indicated by dashed lines) and the dielectric constant of 17 for the Ta₃N₅ were used.^{3, 4}

Nitridation temperature (°C)	Resistivity, ρ (Ω cm)	Carrier concentration, N _d (cm ⁻³)	Hall mobility, $\mu_{\rm H}$ (cm ² V ⁻¹ s ⁻¹)	J at 1.23 V _{RHE} (mA cm ⁻²)
725	0.091	9.5×10^{19}	0.72	3.0
750	0.067	7.8×10^{19}	1.21	4.8
775	0.061	6.0×10^{19}	1.72	5.9
800	0.074	8.5×10^{19}	1.02	3.1
825	0.090	1.0×10^{20}	0.70	2.5
850	0.178	1.4×10^{20}	0.25	1.5

Table S2. Electric properties of Ta_3N_5/SiO_2 thin films at room temperature

Materials and substrates	Film thickness (nm)	$ ho$ (Ω cm)	$N_{\rm d}$ (cm ⁻³)	$\mu_{\rm H} \ ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	$J \text{ at } 1.23 \text{ V}_{\text{RHE}}$ (mA cm ⁻²)
Ta ₃ N ₅ /quartz ^{1*}	850	0.016	2.2×10^{20}	1.9	5.1
Ta ₃ N ₅ /quartz ^{2*}	1000	0.068	5.8×10^{19}	1.6	6.0
Ta ₃ N ₅ /FTO ^{3**}	115	1.43	2.31×10^{19}	0.19	2.4
Ta ₃ N ₅ /Ta-foil ^{4**}	960	0.45	4.7×10^{18}	2.9	0.16
Ta ₃ N ₅ single crystal ^{5*}	_	5-8	$10^{18} - 10^{19}$	0.1 – 1.5	_
Ta ₃ N ₅ -NRs/Ta ^{6***}	600	_	3.7×10^{19}	_	4.0
Ta3N5 (100)- epitaxial/LaAlO3 ^{7*}	60	0.11	6.5×10^{19}	0.90	_
Ta3N5 (001)- epitaxial/LaAlO3 ^{7*}	60	0.045	2.5×10^{20}	0.54	_

Table S3. Electric properties of Ta₃N₅-based photoelectrodes at room temperature.

*The data was acquired by Hall effect measurements at room temperature.

** Ta_3N_5 films were prepared on the quartz substrate using the same manner to fabricate the Ta_3N_5 on the conductive FTO and Ta-foil substrates.

*** The data were acquired by Mott- Schottky analysis.

Figure S6. (a) Absorption coefficient (α) and optical penetration depth (*L*) of Ta₃N₅/SiO₂ thin films calculated from transmission/reflection spectrum of previously reported Ta₃N₅/SiO₂ with 200-nm-thick Ta₃N₅ film.⁸ (b) Plot of IPCE values as a function of the *L* derived from the absorption coefficient spectra. The IPECs were obtained from the monochromatic light illumination at the wavelengths of 420, 460, 500, 540, 570, 600, and 620 nm.

Figure S7. X-ray photoelectron spectroscopy (XPS) overall spectra of optimized Ta₃N₅/SiO₂, non-optimized Ta₃N₅/SiO₂, and precursor of Ta₃N₅/SiO₂ (Ta/SiO₂).

Figure S8. High-resolution XPS spectrum of mirror-polished Ta-metal plate as a reference, (a) Ta 4f, (b) Ta 4p_{3/2}, and (c) O 1s.

Figure S9. XPS spectrum of Ta 4f peaks on mirror-polished Ta-metal plate with peak fitting curves (a) and XPS Ta 4f binding energies and full-width half-maximum (FWHM) in the peak fits for the spectrum (b).

	Surface concentration ratio (%)			
	Ta / (Ta + N + O)	N / (Ta + N + O)	O / (Ta + N + O)	
Optimized Ta ₃ N ₅ /SiO ₂	33.7	43.4	22.9	
Non-optimized Ta3N5/SiO2	32.7	37.3	30.0	
Precursor film (Ta/SiO ₂)	31.7	_	68.3	
Ta-metal plate (reference)	37.3	—	62.7	

Table S4. Surface concentration ratio of Ta, N, O elements on Ta₃N₅/SiO₂.

Figure S10. Surface concentration ratios of (a) optimized and (b) non-optimized Ta_3N_5/SiO_2 thin films evaluated through the results of AR-XPS analysis.

Figure S11. XPS-mapping for optimized Ta_3N_5/SiO_2 (a-d) and non-optimized Ta_3N_5/SiO_2 (e-h) thin films. (a and e) mixed map, (b and f) Ta $4f_{7/2}$ map, (c and g) N 1s map, (d and h) O 1s map. Scale bars (a-h) are 50 µm.

Figure S12. High-resolution XPS spectra after Ar-etching treatment over 0 sec (in red), 30 sec (in blue), 60 sec (in purple), and 90 sec (in black) of Ta₃N₅/SiO₂ thin films. The panels (a-c) and (d-f) correspond to XPS spectra of optimized Ta₃N₅/SiO₂ and non-optimized Ta₃N₅/SiO₂, respectively.

Figure S13. High-resolution XPS spectra of the precursor film (Ta/SiO₂) of Ta₃N₅/SiO₂ after Ar-etching treatment over 0 sec (in red), 30 sec (in blue), 60 sec (in purple), and 90 sec (in black). (a) Ta 4f, (b) Ta 4p_{3/2}, (c) O1s. The arrows indicated the intensity of the XPS signal varies associated with repetitive Ar-etching. (d) Depth profile for surface concentration ratio of Ta and O on Ta/SiO₂.

Figure S14. Plot of surface concentration ratio and IPCE values at 420 and 460 nm monochromatic light as a function of optical penetration depth (*L*) of the Ta₃N₅/SiO₂ thin film for optimized- (a) and non-optimized (b) samples. The *L* was calculated from the absorption coefficients of previously reported Ta₃N₅ thin film (Fig. S6).⁸

rable 55. Summary of FEC and electrical properties of Ta3N5/SIO2					
	J at 1.23 V _{RHE} (mA cm ⁻²)	IPCE at 1.23 V _{RHE} at 420 nm (%)	σ (S cm ⁻¹)	$N_{\rm d}$ (cm ⁻³)	$\mu_{\rm H} \ ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$
Optimized Ta ₃ N ₅ /SiO ₂ processed at 775°C	5.9	65	16.4	6.0×10^{19}	1.72
Non-optimized Ta ₃ N ₅ /SiO ₂ processed at 825°C	2.5	28	11.1	1.0×10^{20}	0.70

Table S5. Summary of PEC and electrical properties of Ta₃N₅/SiO₂

References

- 1. Y. Kawase, T. Higashi, M. Katayama, K. Domen and K. Takanabe, *ACS Appl. Mater. Interfaces*, 2021, **13**, 16317-16325.
- T. Higashi, H. Nishiyama, Y. Otsuka, Y. Kawase, Y. Sasaki, M. Nakabayashi, M. Katayama, T. Minegishi, N. Shibata, K. Takanabe, T. Yamada and K. Domen, *ChemSusChem*, 2020, 13, 1974-1978.
- 3. H. Hajibabaei, D. J. Little, A. Pandey, D. Wang, Z. Mi and T. W. Hamann, *ACS Appl. Mater. Interfaces*, 2019, **11**, 15457-15466.
- 4. A. Ziani, E. Nurlaela, D. S. Dhawale, D. A. Silva, E. Alarousu, O. F. Mohammed and K. Takanabe, *Phys. Chem. Chem. Phys.*, 2015, **17**, 2670-2677.
- 5. L. Jin, F. Cheng, H. Li and K. Xie, *Angew. Chem. Int. Ed.*, 2020, **59**, 8891-8895.
- Y. Li, L. Zhang, A. Torres-Pardo, J. M. González-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota and K. Domen, *Nat. Commun.*, 2013, 4, 2566.
- Y. Wang, Y. Hirose, T. Wakasugi, Y. Masubuchi, M. Tsuchii, Y. Sugisawa, D. Sekiba, A. Chikamatsu and T. Hasegawa, J. Phys. Chem. Lett., 2021, 12, 12323-12328.
- 8. T. Higashi, Y. Sasaki, Y. Kawase, H. Nishiyama, M. Katayama, K. Takanabe and K. Domen, *Catalysts*, 2021, **11**, 584.