Spin-Induced Electron Transmission through Metal-Organic Chiral Crystals

Tapan Kumar Das¹, Amit Kumar Mondal¹, Om Shanker Tiwari², Pandeeswar Makam², Gregory Leitus³, Ehud Gazit², Fontanesi Claudio⁴, and Ron Naaman¹*

- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001 Israel.
- ^{2.} The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
- ^{3.} Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001 Israel.
- ^{4.} Department of Engineering "Enzo Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy.

Materials and methods: All the chemicals including amino acids were purchased from Sigma Aldrich (purity > 98%). Water was processed using a Millipore purification system (Biological Industries, Beit Haemeck, Israel) with a minimum resistivity of 18.2 M Ω cm.

Crystal preparation and data collection for the Co(II)-Phe crystal:

The Co(II)-Phe crystal suitable for SCXRD was immersed in Paratone–N oil, mounted in a MiTeGen loop and flash-frozen in liquid nitrogen at 100 K. The Data was collected with a Rigaku XtaLab Synergy R rotating anode source and a HyPix-Arc 150 detector using CuK α radiation (1.54184 Å). The Data was collected as ω scans using 'CrysAlisPro 1.171.41.111a (Rigaku OD, 2021)'. Data were integrated and reduced in CrysAlisPro. The structure was solved by direct methods (SHELXT-2018)¹ and refined by full-matrix least-squares methods against F^2 (SHELXL-2013)² as implemented in Olex2 (Dolomanov 2016).³ The Mercury 2020.3.0 software was used for molecular graphics.

Compound	Co(II)-Phe
CCDC number	2283838
Crystal description	Pink colour plate
Diffractometer	Rigaku XtaLab Synergy R
Temperature (K)	100
Chemical formula	$C_{18}H_{24}CoN_2O_6$
Formula weight (g/mol)	423.32
Wavelength (Å)	1.54184
Crystal system	Monoclinic
Space group	P12 ₁ 1
a (Å)	4.8214 (2)
b (Å)	32.8351 (12)
c (Å)	6.0176 (2)
α (°)	90
β (°)	105.571 (4)
γ (°)	90
Volume (Å ³)	917.68 (6)
Z	2
ρ_{calc} (g/cm ³)	1.532
μ (mm ⁻¹)	7.672
F(000)	442.0
2θ range for data collection (°)	9.998 to 149.504
Index ranges	$-6 \le h \le 6, -41 \le k \le 41, -7 \le l \le 7$
Data/restraints/parameters	3645/0/257
Goodness-of-fit on F ²	1.053
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0388, wR_2 = 0.0946$

Table S1. Crystallographic data collection and refinement statistics for Co(II)-Phe crystal.

Superconducting Quantum Interference Device (SQUID) Measurements:

For a paramagnet containing identical ions with a partially filled electron shell, the following expression for the Curie constant is known (eq.31.49 in [12]).

$$C = \frac{N_A \mu_B^2}{3k_B} g_{(JLS)}^2 \left[J(J+1) \right]$$
(1s)

where N_A is the Avogadro number, μ_B is the Bohr magneton, k_B is the Boltzmann constant, $g_{(JLS)}$ is the Lande factor, and *J*, *L*, and *S* are the total, orbital, and spin quantum numbers, respectively. For Co²⁺ ions, we assumed here that *L* =0 and therefore that J = S = 3/2 and g = 2, since for transition metal ions of the iron group we can usually neglect the spin-orbit coupling in comparison with the effect of the crystal field on their outer d-electrons.

Magnetic Conductive Atomic Force Microscopy (mc-AFM): For the samples for the mc-AFM measurement, the substrate surfaces were prepared by evaporating an 8 nm Ti adhesive layer, followed by a 100 nm layer of nickel and an 8 nm layer of gold on top of a Si/SiO₂ wafer with a 2 µm thermal silicon oxide layer. The magnetic field was used to enable field-induced electron spin injections from the surface to the crystal by magnetizing the Ni/Au surface. Prior to transferring crystals to the Ni/Au surface, all surfaces were cleaned by boiling them first in acetone and then in ethanol for 10 min, followed by a UV-ozone cleaning for 15 min and a final incubation in warm ethanol for 30 min. The solution of the crystal was drop-casted on the surface and kept in vacuum before proceeding to the mc-AFM measurements.

Figure S1: Optical micrograph of (A) an L-Phenylalanine- Co^{2+} crystal and (B) a D-Phenylalanine- Co^{2+} crystal.

References

1. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal Structure Determination. *Acta Cryst. A*, 2015, **71**, 3-8.

2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C, 2015, 71, 3-8.

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.*, 2009, **42**, 339-341.