Supplementary Information

Investigation of mechanical properties and structural integrity of graphene aerogels via molecular dynamics simulations

Bowen Zheng¹, Chen Liu², Zhou Li^{3,4}, Carlo Carraro⁴, Roya Maboudian⁴, Debbie G. Senesky^{3,5}, and Grace X. Gu^{1,*}

¹Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States

²Department of Mechanical Engineering, Stanford University, CA 94305, United States

³Department of Aeronautics & Astronautics, Stanford University, CA 94305, United States

⁴Department of Chemical and Biomolecular Engineering, and Berkeley Sensor & Actuator Center, University of California, Berkeley, CA 94720, United States

⁵Department of Electrical Engineering, Stanford University, CA 94305, United States

Figure S1. Stress-strain curves where $N_{\text{flake}} = 200$, $N_{\text{inc}} = 200$, $\sigma = 5.0$ Å, $N_{\text{cycles}} = 10$, and $T_{\text{A}} = 2000$ K. Stress-strain curves under (a) tension and (b) compression.

Figure S2. Stress-strain curves without the relaxation process after annealing cycles where $N_{\text{flake}} = 200$, $N_{\text{inc}} = 200$, $\sigma = 5.0$ Å, $N_{\text{cycles}} = 10$, and $T_{\text{A}} = 2000$ K. Stress-strain curves under (a) tension and (b) compression.

Figure S3. Mechanical properties of GA as a function of ϵ . (a) Density ρ , (b) tensile strength σ_u , (c) tensile failure strain ε_u , (d) tensile and (e) compressive moduli E_t and E_c of GA as a function of ϵ .

Figure S4. Disconnected GA structure. The structure when (a) unloaded and (b) under tension. (c) Stress-strain relation of the GA under tension.

Figure S5. GA structure where $N_{\text{flake}} = 200$, R = 5.0, $\sigma = 15.0$ Å, and $T_{\text{A}} = 2000$ K under various numbers of annealing cycles. Initial structure and the structure under tension of GAs prepared with (a) 10, (b) 20, and (c) 50 annealing cycles. $N_{\text{bond/atom}}$ for (a-c) are 1.384, 1.386, 1.389, respectively.

Figure S6. Mechanical properties of GA as a function of N_{flake} . (a) Illustration of the effect of N_{flake} . (b) Density ρ , (c) tensile strength σ_{u} , (d) tensile failure strain ε_{u} , (e) tensile and (f) compressive moduli E_{t} and E_{c} of GA as a function of N_{flake} .

Figure S7. GA structure where $N_{\text{flake}} = 200$, R = 1.0, $\sigma = 13.0$ Å, and $T_{\text{A}} = 2000$ K. The structure when (a) unloaded and (b) subject to tension.

Figure S8. GA structure where $N_{\text{flake}} = 200$, R = 5.5, $\sigma = 5.0$ Å, and $T_{\text{A}} = 2000$ K. The structure when (a) unloaded and (b) subject to tension.

Figure S9. GA structure formed with annealing temperature $T_A = 4000$ K where bond breakings and thermally unstable behavior are observed. Problematic geometries are circled.

Figure S10. GA connectivity property under different distributions of graphene flake side length *L*. $N_{\text{bond/atom}}$ versus N_{cycle} plots with (a) $\sigma = 3.0$ Å, (b) $\sigma = 7.0$ Å, (c) $\sigma = 9.0$ Å, and (d) $\sigma = 13.0$ Å

Figure S11. Images of GA showing catastrophic failure during tensile test. Compression tests were performed on dynamic mechanical analysis (DMA, TA Instrument Q800). A preload of 10 mN was applied on the GA samples to assure full contact. The samples were compressed to 80 % strain with a loading rate of 10 % strain/min. Tension tests were performed on universal testing machines (Instron) with a loading rate of 10 % strain/min.

Figure S12. Mechanical properties of GA as a function of the cutoff distance r_c . (a) Density ρ , (b) tensile strength σ_u , (c) tensile failure strain ε_u , (d) tensile and (e) compressive moduli E_t and E_c of GA as a function of r_c . LAMMPS performances for $r_c = 8.0, 9.0, 10.0$ and 11.0 Å are 15.288, 14.791, 13.595 and 12.416 ns/day, respectively.