Dynamic behavior of metal nanoparticles in MOF materials: analysis with electron microscopy and deep learning

Erokhin K.S.,^{*a,c*} Pentsak E.O.,^{*a,c*} Sorokin V.R.,^{*b*} Agaev Yu.V.,^{*b*} Zaytsev R.G.,^{*b*} Isaeva V.I.,^{*a*} Ananikov V.P.^{*a,b**}

^aZelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia; https://AnanikovLab.ru

^b Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia

^c The authors contributed equally

Table of Content

1.	TEM analysis of MOF materials	2
2.	TGA analysis	5
3.	Powder XRD analysis	6
4.	Analysis with HR-TEM	10
5.	SAED analysis	12
References		13

1. TEM analysis of MOF materials

Figure S1. TEM images of MOFs, which are unstable under an electron beam: (A) MIL-101(Fe); (B) NH₂-MIL-101(Fe); (C) ZIF-67(Co); (D) BIF-66(Co). Electron beams cause MOF decomposition and the formation of nanoparticles.

Figure S2. TEM images of MOFs unstable under an electron beam: (A) Ni(BDC); (B) Ni(BTC); (C) MOF-74(Ni); (D) HKUST-1(Cu). Electron beams cause MOF decomposition and the formation of M-NP.

Figure S3. TEM images of MOFs stable under an electron beam: (A) MIL-53(Al); (B) NH₂-MIL-53(Al); (C) NH₂-MIL-101(Al); (D) ZIF-8(Zn).

Figure S4. TG, DTG curves for sample BIF-66.

Figure S5. TG, DTA curves for sample BIF-66.

3. Powder XRD analysis

For MOF samples MIL-53(Al), NH₂-MIL-101(Al), NH₂-MIL-53(Al), ZIF-8(Zn), MIL-101(Fe), NH₂-MIL-101(Fe), BIF-66, ZIF-67, and HKUST-1, X-ray powder diffraction data were collected (22°C) in a reflection mode utilizing a Panalytical EMPYREAN instrument equiped with a linear X'celerator detector and non-monochromated Ni-filtered Cu K_{α} radiation (λ =1.5418 Å). Measurement parameters are as follows: tube voltage/current 45 kV / 40 mA, divergence slits of 1/8 and 1/4°, 2 θ range 3-40°, speed 1° min⁻¹.

PXRD patterns of NiBTC and MOF-74(Ni) were collected with a diffractometer DRON-2 using the following mode: 2Θ =10-60° range, rate 1°/min, Cu K_a radiation (30 kV, 30 mA), Ni-filter.

Micro-powder X-ray diffraction was used for NiBDC analysis and was carried out on a fourcircle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_{α} radiation (50 kV, 1 mA). Samples were fixed on the loop utilizing grease (Dow corning). Data were collected at 22°C, exposure time was 300 s and detector distance was 120 mm in 20 range 0-50°.

XRD patterns of the synthesized MOF samples, i.e., NH_2 -MIL-101(Al), BIF-66, ZIF-67, HKUST-1, NiBTC, and MOF-74(Ni) are consistent with those reported in literature.¹⁻⁴

Figure S6. PXRD pattern of MIL-53(Al).

Figure S7. PXRD pattern of NH₂-MIL-53(Al).

Figure S8. PXRD pattern of MIL-101(Fe).

Figure S9. PXRD pattern of NH₂-MIL-101(Fe)

Figure S10. PXRD pattern of ZIF-8.

Figure S11. PXRD pattern of NiBDC.

4. Analysis with HR-TEM

Figure S12. HR-TEM image of ZIF-67 with formed Co NPs.

Figure S13. HR-TEM image of HKUST-1 with formed Cu NPs.

5. SAED analysis

Figure S14. ED pattern of ZIF-67 particle with formed Co NPs.

References

- 1. V. I. Isaeva, M. N. Timofeeva, I. A. Lukoyanov, E. Y. Gerasimov, V. N. Panchenko, V. V. Chernyshev, L. M. Glukhov and L. M. Kustov, *J. CO2 Util.*, 2022, **66**, 102262.
- G. S. Deyko, L. M. Glukhov, V. I. Isaeva, V. V. Chernyshev, V. V. Vergun, D. A. Archipov, G. I. Kapustin, O. P. Tkachenko, V. D. Nissenbaum and L. M. Kustov, *Crystals*, 2022, 12, 279.
- V. I. Isaeva, K. Papathanasiou, V. V. Chernyshev, L. Glukhov, G. Deyko, K. K. Bisht, O. P. Tkachenko, S. V. Savilov, N. A. Davshan and L. M. Kustov, ACS Appl. Mater. Interfaces, 2021, 13, 59803-59819.
- 4. E. S. Degtyareva, K. S. Erokhin and V. P. Ananikov, Catal. Commun., 2020, 146, 106119.