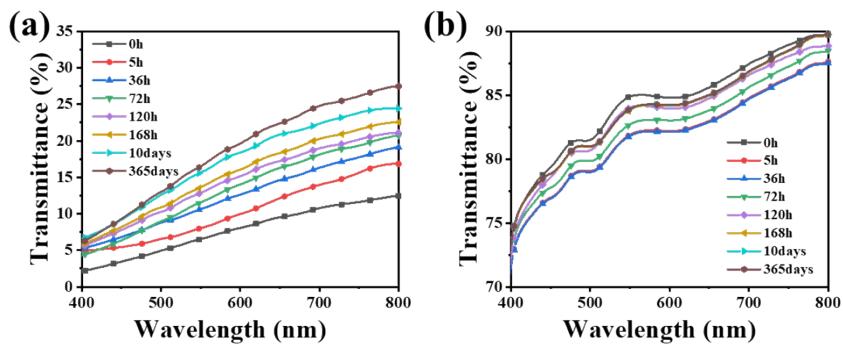


Supporting Information

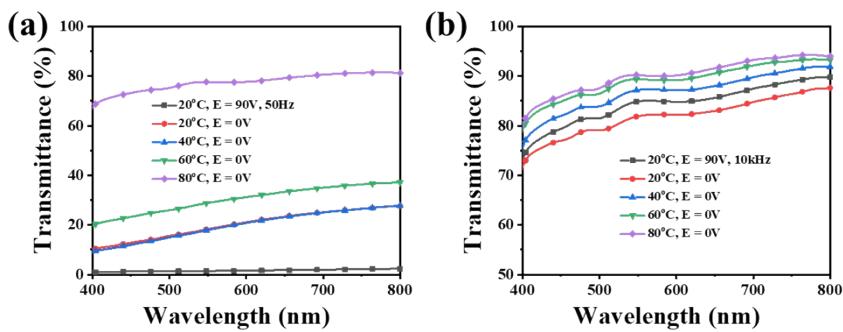
Bistable cholesteric liquid crystal film stabilized by liquid-crystalline epoxy/ thiol compound-based polymer

Huimin Zhang^{a,b#}, Fei Li^{c#}, Junqin Li^b, Zemin He^{a,b}, Jianjing Gao^{a,b}, Lifen Wen^b, Yuzhen Zhao^{a,b}, Zongcheng Miao^{d*}

^a *Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, P. R. China.*


^b *Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P. R. China.*

^c *Xi'an Manareco New Materials Co Ltd, Xi'an 710077, P. R. China.*


^d *School of Artificial Intelligence, Optics and Electronics (Iopen), Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China.*

* Correspondence to: Zongcheng Miao (miao@nwpu.edu.cn).

Huimin Zhang and Fei Li contributed equally to this work.

Figure S1. Transmission spectra of sample A4 at different time after removing the (a) LF and (b) HF electric field.

Figure S2. Transmission spectra of sample A4 at different temperature: (a) LF electric field; (b) HF electric field. Spectra at zero field ($E = 0V$) condition are measured 48h after the field is removed.