Supporting Information

Unleashing Power of Boron: Enhancing Nitrogen

Reduction Reaction Through Defective ReS₂

Monolayers

Thi H. Ho^{a,b,#}, Viet Q. Bui^{c,#,*}, Quynh Anh T. Nguyen^c, Yoshiyuki Kawazoe^{d,e,f}, Seong-Gon Kim^g and Pham Cam Nam^{c,h}

- ^{a.} Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- ^{b.} Faculty of Mechanical Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam. Email: thi.hohuynh@vlu.edu.vn
- ^{c.} Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam. E-mail of corresponding author: bqviet@ac.udn.vn
- d. New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan.
- ^{e.} School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand.
- ^{f.} Physics and Nanotechnoloy, SRM Institute of Science and Technology, Kattankurathur, Tamil Nadu, 603203 India.
- ^{g.} Department of Physics & Astronomy and Center for Computational Sciences, Mississippi State University, Starkville, Mississippi 39762, United States.
- ^{h.} Faculty of Chemical Engineering, The University of Danang–University of Science and Technology, Danang City 550000, Vietnam.

[#] *Thi H. Ho and Viet Q.Bui contributed equally to this work.*

* Corresponding author: Viet Q.Bui, email: <u>bqviet@ac.udn.vn</u>; mrbuiquocviet@gmail.com

Table S1. Adsorption energies of N2 on the active B site, categorized by both end-on and side-on configurations.

Structures	B@V _{Re}	B@Vs	B@V _{ReS}	B@V _{ReS2}	dB@V _{Re}
E _{End-on} (eV)	0.439	-0.944	0.181	-0.261	0.357
E _{Side-on} (eV)	No interaction	0.561	0.235	-0.101	No interaction

Table S2. Overview of NH₃* adsorption energy values $({}^{\Delta G_{NH_3}*})$ on B-doped defective ReS₂, derived from activity assessments. The ${}^{\Delta G_{NH_3}*}$ represents the free energy of gaseous NH₃.

Structures	ZPE	TS	ΔG_{NH_3*}
B@V _{Re}	1.07	0.01	-0.19
B@Vs	1.06	0.01	-1.16
B@V _{ReS}	1.06	0.01	-0.46
B@V _{ReS2}	1.06	0.01	-0.43
dB@V _{Re}	1.08	0.01	-0.25

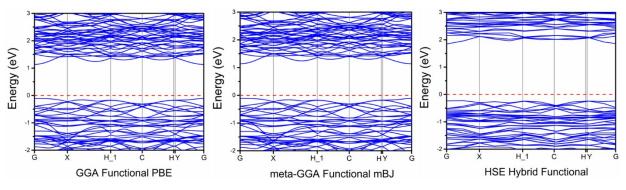
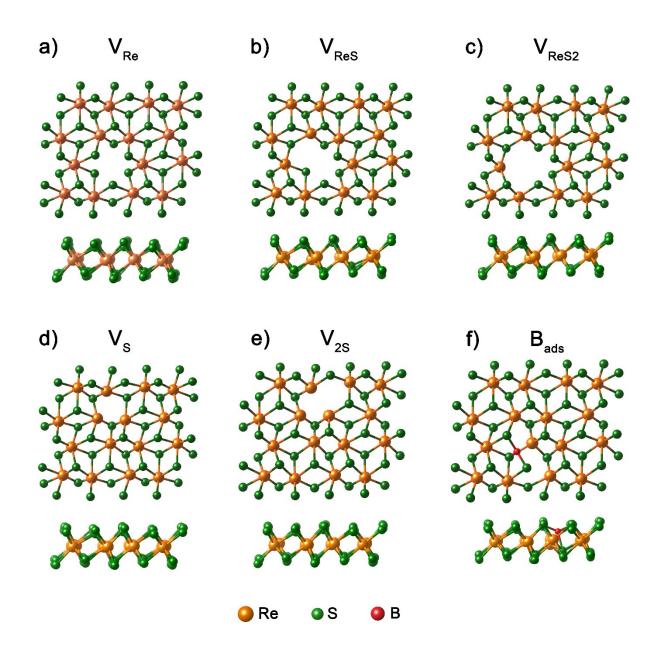



Figure S1. The band structures of ReS2 were determined using DFT with GGA-PBE, metaGGA-

mBJ, ^{S1}	and	the	HSE06	hybrid	functional ^{S2,S3}	methods.

Figure S2. Optimized configurations of other five defective ReS₂ structures: (a) one-Re vacancy, (b) one-Re-and-one-S vacancy, (c) one-Re-and-two-S vacancy, (d) one-S vacancy, (e) two-S vacancy, and (f) B-adsorbed ReS₂, respectively. Orange, green, and red spheres represent Re, S, and B atoms. Symbol (V) denotes the vacancy sites of the ReS₂ substrate. Top and side views are provided for each configuration.

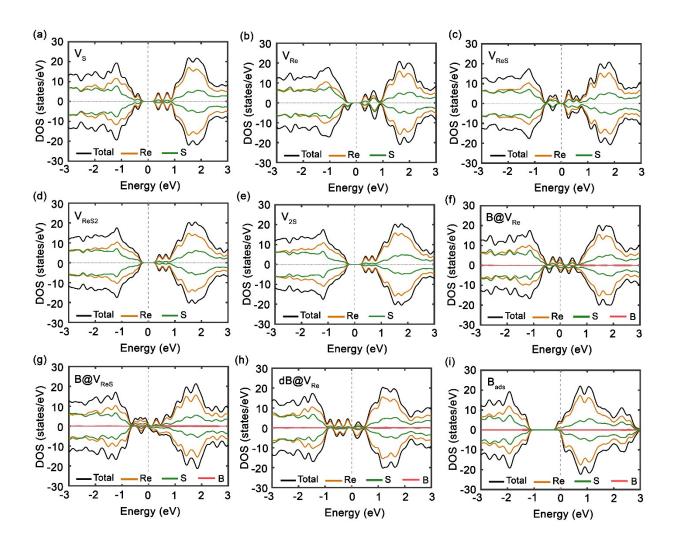


Figure S3. Partial density of states (PDOS) for (a) V_S , (b) V_{Re} , (c) V_{ReS} , (d) V_{ReS2} , (e) V_{2S} , (f) $B@V_{Re}$, (g) $B@V_{ReS}$, (h) $dB@V_{Re}$, and (i) B_{ads} . Black, orange, green, and red lines represent total DOS, PDOS of Re, S, and B atoms, respectively.

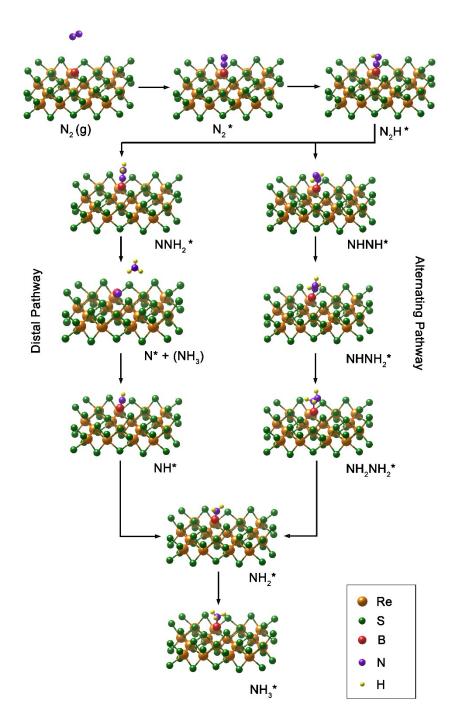


Figure S4. Schematic view of distal (left) and alternating (right) NRR reaction pathways for Bdoped ReS_2 with S defect. Orange, green, red, purple, and yellow spheres represent Re, S, B, N, and H atoms, respectively.

References

- S1. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- S2. A. D. Becke and E. R. Johnson, J. Chem. Phys., 2006, 124, 221101.

S3. F. Tran and P. Blaha, Phys. Rev. Lett., 2009, 102, 226401.