Supporting Information for

Regulating the electronic properties of WGe₂N₄ monolayer by adsorption of 4d transition metal atoms towards spintronic

devices

Jin-Lan Sun, Mi-Mi Dong, Yue Niu, Zong-Liang Li, Guang-Ping Zhang, Chuan-Kui

Wang*, Xiao-Xiao Fu*

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong

Provincial Engineering and Technical Center of Light Manipulations, School of

Physics and Electronics, Shandong Normal University, Jinan 250358, China

*E-mail: ckwang@sdnu.edu.cn; fuxiaoxiao@sdnu.edu.cn

Table S1. The adsorption energies (E_a) , adsorption distances (D), magnetic moments (M) and band gaps (E_{gap}) of the WGe₂N₄ monolayer adsorbing 4d transition metal atoms (Y–Cd) with the most stable adsorption structures.

ТМ	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
$E_{\rm a}/{\rm eV}$	-2.66	-1.93	-1.6	-0.56	-1.00	-1.80	-1.93	-1.60	-0.49	-0.30
$D/{ m \AA}$	1.10	1.78	1.31	2.38	2.16	1.78	1.79	1.90	2.53	3.06
$M/\mu_{ m B}$	0.77	3.02	2.90	5.62	4.98	2.01	0.96	0.00	-0.02	0.00
$E_{\rm gap}/{\rm eV}$	0.00	0.00	0.00	0.00	0.09	0.12	0.18	0.66	0.00	0.60

Fig. S1 The band structures of the WGe₂N₄ monolayer with 4d transition metal adatoms (Y, Zr, Mo, Tc, Ru, Pd, Ag, and Cd).

Fig. S2 The orbital projected band structures of the (a) Nb- and Rh-adsorbed WGe_2N_4 monolayer. In order to observe the occupation of the atomic orbitals of the Nb-adsorbed system more clearly, the occupation of the orbitals of Nb, W, and N atoms are plotted separately.

Fig. S3 The zero-bias transmission spectra of Sc-adsorbed WGe_2N_4 device with the central region containing 6, 7, and 8 units with parallel magnetization configuration.