Drumhead Surface State Promoted Hydrogen Evolution Reaction in Type-II Nodal-Line Topological Catalyst Mg₃Bi₂

Min Zhao ¹, Weizhen Meng ^{2*}, Lirong Wang ¹, Zeqing He ¹, Lei Jin ¹, Ying Liu ¹, Xuefang Dai ¹, Xiaoming Zhang ^{1*}, Hongshi Li ^{1*}, and Guodong Liu ^{1*}

- 1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
- 2. College of Physics, Hebei Key Laboratory of Photo physics Research and Application, Hebei Normal University, Shijiazhuang, 050024, China.

E-mail of corresponding authors: meng199608@126.com; zhangxiaoming87@hebut.edu.cn; ish82@126.com; gdliu1978@126.com

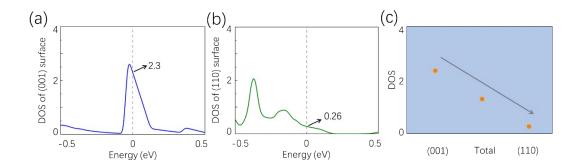


Figure S 1 (a) - (c) Electronic density of states of (001), (110) and bulk bands near Fermi level in Mg_3Bi_2 with Kagome lattice, respectively.

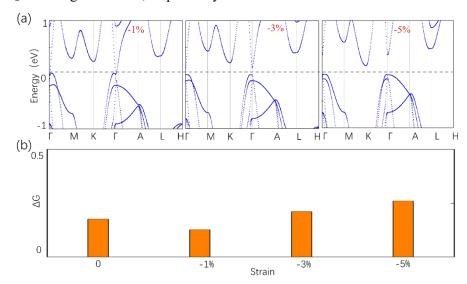


Figure S2. (a) and (b) The electronic band structures and ΔG_H under different strains, respectively.

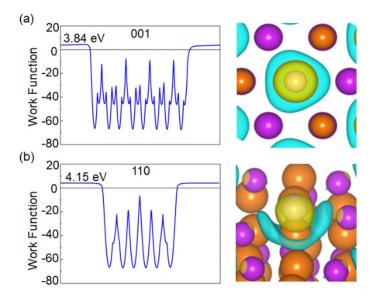


Figure S 3 (a) and (b). The work function and charge differential density of Mg_3Bi_2 on (001) and (110) surfaces, respectively.

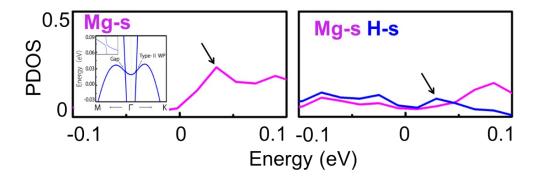


Figure S 4. Projected DOS of the active Mg-s orbital of Mg₃Bi₂ catalyst before and after interacting with the H intermediate

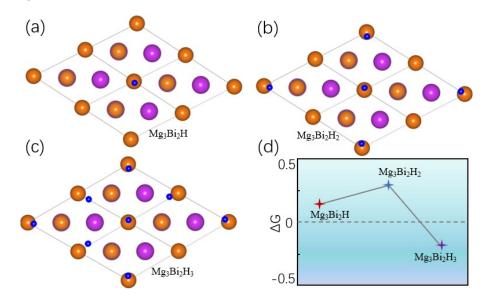


Figure S 5 (a) - (c) The optimized supercell structure of Mg_3Bi_2H , $Mg_3Bi_2H_2$, $Mg_3Bi_2H_3$, respectively. (d) Gibbs free energy of Mg_3Bi_2 under different hydrogen coverages.