Exploring the Influence of Graphene on Antiaromaticity of Pentalene

Keerthy P. Sudhakaran^a, Alfy Benny^b, Athira T. John^a and Mahesh Hariharan^{*a}

^aSchool of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.

^bDepartment of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Electronic Supplementary Information (ESI)

Contents

Section	A: Computational Techniques	S3
٠	Geometry Optimizations	S3
٠	Nucleus Independent Chemical Shift (NICS)	\$3
٠	Gauge Including Magnetic Induced Current (GIMIC)	S3
٠	Harmonic Oscillator Model of Aromaticity (HOMA)	S3
٠	Anisotropy of the induced current density (AICD)	S3
•	Non-Covalent Interaction analysis (NCI)	S3
•	Symmetry Adapted Perturbation Theory (SAPT)	S4
Section	B: Tables	S5
•	Table S1: NICS _{ZZ} and Δ NICS _{ZZ} calculated for bare Pentalene, Pent-Coro ₂₄ and Pent-Coro ₅₄ systems. NICS values are in ppm	\$5
•	Table S2: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bond of a bare pentalene molecule. GIMIC current strength units are in nA T^{-1} . Ring numbers of pentalene are shown in Figure S1a	S5
•	Table S3: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bonds of pentalene molecule in optimized geometry of Pent-Coro ₂₄ system. GIMIC curr strength units are in nA T ⁻¹	
•	Table S4: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bonds of pentalene molecule in optimized geometry of Pent-Coro ₅₄ system. GIMIC curr strength units are nA T ⁻¹	
Section	C: Figures	S7
•	Figure S1: Figures showing the positions of pentalene on a) Hollow site, b) Top site and c) Bridge si on graphene surface (Coro ₂₄)	

Sectio	n D: References	S11
•	Figure S0: GIMIC current strength values of a) Bare pentalene b) Pent-Coro ₂₄ and c) Pent- Coro ₅₄	.S10
•	Figure S9: Schematic illustrations of the placement of integration plane across the selected bond of a) Bare pentalene b) Pent-Coro ₂₄ and Pent-Coro ₅₄ .The value of distance (d) is equal to 1.8 Å	
•	Figure S8: Schematic illustrations of NICS-Z scan probes of a) Bare pentalene, b) Pent-Coro ₂₄ and c Pent-Coro ₅₄	-
•	Figure S7: Schematic illustrations of NICS probes placed at 1 Å above the centroid of a) Bare pentalene, b) Pent-Coro ₂₄ and c) Pent Coro ₅₄	
•	Figure S6: Schematic illustrations of NICS-X scan probes of a) Bare Pentalene b) Pent-Coro ₂₄ and c) PentCoro ₅₄	
•	Figure S5: NCI plot showing weak stabilizing interactions represented as green discs a) Pent-Coro ₂ and b) PentCoro ₅₄	
•	Figure S4: Side view of optimized structures of a) Pent-Coro ₂₄ and b) Pent-Coro ₅₄	S8
•	Figure S3: Top view of optimized structures of a) Pent-Coro ₂₄ and b) Pent-Coro ₅₄	S7
•	Figure S2: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bond of a bare pentalene molecule. GIMIC current strength units are in nA T ⁻¹ . Ring numbers of pentalene are shown in Figure S1a	S7

Section A: Computational Techniques

Geometry Optimizations: The geometries of six pentalene-graphene model systems were optimized at the B3LYP-D3(BJ)/Def2-SVP level of theory.^{1–5} The B3LYP functional included with Grimme's D3 dispersion correction and Becke–Johnson (BJ) damping is widely used for the geometry optimization of non-covalently bounded systems for getting an accurate description of dispersion and other-noncovalent interactions. The B3LYP-D3(BJ) functional avoids interatomic repulsions at short distances. The geometries of monomers (bare pentalene, coronene fragments including C₂₄H₁₂ (Coro₂₄) and C₅₄H₁₈ (Coro₅₄) were optimized at wB97XD⁶/6-311+G** level of theory. All the geometry calculations were carried out with Gaussian 16 software.⁷ The optimized structures and intermolecular distances of pentalene-graphene systems are shown in Figures S3 and S4.

Nucleus Independent Chemical Shift (NICS): NICS scan calculations^{8–12} were carried out using Gauge Including Atomic Orbital (GIAO) method at B3LYP/6-311+G^{**} level of theory in Gaussian 16 software. Two types of NICS scan were performed. NICS-X scan was performed at a distance of 1.7 Å above the molecular plane of pentalene with and without the presence of graphene surfaces with an interval of 0.1 Å between the ghost atoms (Figure 3a, 3b and S7).¹³ NICS-Z scan was performed for a series of ghost atoms placed at a separation of 0.1 Å along the lines passing through the centroid of five-membered ring of pentalene, perpendicular to the molecular plane (Figure S8). The ghost atoms for the NICS scan were generated using the Aroma software.¹⁴

Gauge Including Magnetic Induced Current (GIMIC): The relationship between nuclear magnetic shielding tensor and the current density susceptibility tensor is given by Biot-Savart law. The GIMIC program calculates current density susceptibility tensor by a combination of Biot-Savart law and the analytic gradient expression for calculating NMR shielding tensors. The calculated current densities are gauge origin independent as the gauge including atomic orbitals (GIAOs) or London Atomic Orbitals (LAOs) are employed. Integration of current density through bonds gives a quantitative measure of dominating current density flow. The density matrices for GIMIC calculation were obtained via the nuclear magnetic shielding calculation done at B3LYP/6-311+G** level of theory. The magnetically induced current densities were calculated using the GIMIC program.^{15–17} The direction of external magnetic field is perpendicular to the molecular plane of pentalene.

Harmonic Oscillator Model of Aromaticity (HOMA): HOMA^{18–20} values for all the rings in the molecules were calculated using Multiwfn package (version 3.6) with the formula:

$$HOMA = 1 - \frac{\alpha}{n} \sum_{i=1}^{n} (R_{opt} - R_i)^2$$

Where n is the number of C-C bonds in the ring, R_i corresponds to individual C-C bond lengths, α represent an empirical constant of value 257.7 and R_{opt} represent optimum carbon-carbon bond length.

Anisotropy of the induced current density (AICD): AICD^{21,22} plots were generated by applying a continuous set of gauge transformations method (CSGT) performed at B3LYP/6-311+G** level of theory. When an external magnetic field is applied to the molecular plane of the molecule, AICD plots can be employed for the visualization of the direction and density of the induced ring current. The 3D image of the conjugated electron densities with a scalar field can be visualized using the AICD method. An aromatic molecule exhibits a clockwise direction and an antiaromatic molecule exhibits a counter clockwise direction of current density.

Non-Covalent Interaction: NCI analysis²³ employs an index based on electron density and its derivatives to identify noncovalent interactions. A two-dimensional plot of reduced electron density (s) against electron density (ρ) and the critical points are associated with the troughs appearing in the plot. Reduced electron density is given by:

$$S = \frac{1 |\nabla \rho|}{2(3\pi^2)^{1/3} \rho^{4/3}}$$

Noncovalent interactions occur in the real space points where these troughs appear. The sign of second derivative of $\rho(\nabla^2 \rho)$ is analyzed to distinguish attractive and repulsive interactions. The noncovalent interaction regions are represented in the plot as discs with color ranging from blue (attractive) to red (repulsive) as in the VIBGYOR spectrum.

Symmetry Adapted Perturbation Theory (SAPT): SAPT(0) analysis²⁴ was employed to determine the non-covalent interaction energies of dimer molecules. The SAPT module of the psi4 code was employed, with aug-cc-pVDZ basis set. SAPT(0) calculations provide the contributing components of interaction energy. The results obtained from SAPT(0) analysis is a second order perturbation expansion constituting first order electrostatic and exchange energy parts and second order dispersion, induction and their exchange counterparts as the perturbation terms

$$E_{int}^{Sapt(0)} = E_{elc}^{(1)} + E_{ex}^{(1)} + E_{ind}^{(2)} + E_{ind-ex}^{(2)} + E_{dis}^{(2)} + E_{dis-ex}^{(2)}$$

Section B: Tables

Molecular systems	NICSzz (1)	NICSzz (0)	ΔNICSzz (1)	ΔNICSzz (0)
Bare Pentalene	56.49	91.34	-	-
Pent-Coro ₂₄	46.60	76.43	-9.89	-14.91
Pent-Coro ₅₄	38.99	68.84	-17.50	-22.50

Table S1: NICS_{ZZ} and ΔNICS_{ZZ} calculated for bare Pentalene, Pent-Coro₂₄ and Pent-Coro₅₄ systems. NICS values are in ppm.

Table S2: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bond of a bare pentalene molecule. GIMIC current strength units are in nA T^{-1} . Ring numbers of pentalene are shown in Figure S1a.

Ring numbers	Diatropic contribution	Paratropic contribution	Total net current strength
C1-C2	6.76	-24.98	-18.22
C2-C3	6.73	-22.84	-16.12
C3-C4	6.97	-24.01	-17.03
C4-C5	6.44	-23.82	-17.39
C5-C6	6.76	-24.98	-18.22
C6-C7	6.73	-22.84	-16.12
C7-C8	6.97	-24.01	-17.03
C8-C1	6.44	-23.82	-17.39

Table S3: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bonds of pentalene molecule in optimized geometry of Pent-Coro₂₄ system. GIMIC current strength units are in nA T^{-1} .

Ring numbers Diatropic contribution	Paratropic contribution	Total net current strength
-------------------------------------	-------------------------	----------------------------

C1-C2	6.99	-25.29	-18.30
C2-C3	6.96	-23.32	-16.36
C3-C4	7.10	-24.01	-16.91
C4-C5	6.53	-23.90	-17.47
C5-C6	6.84	-25.07	-18.23
C6-C7	6.70	-22.75	-16.05
C7-C8	7.09	-24.06	-16.97
C8-C1	-24.36	-24.36	-17.72

Table S4: The diatropic, paratropic and total net GIMIC current strengths flowing through the peripheral bonds of pentalene molecule in optimized geometry of Pent-Coro₅₄ system. GIMIC current strength units are in nA T^{-1} .

Ring Numbers	Diatropic contribution	Paratropic contribution	Total net current strength
C1-C2	6.96	-24.65	-17.69
C2-C3	6.97	-22.49	-15.52
C3-C4	7.33	-23.18	-15.87
C4-C5	6.69	-23.80	-17.11
C5-C6	7.03	-24.58	-17.56
C6-C7	7.06	-22.56	-15.50
C7-C8	7.30	-23.12	-15.71
C8-C1	6.56	-23.87	-17.31

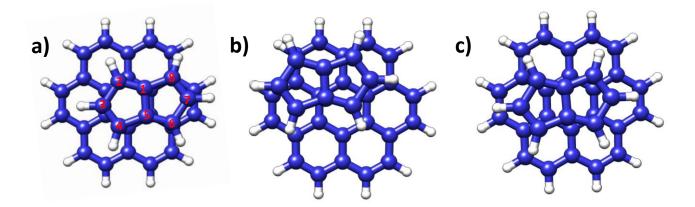
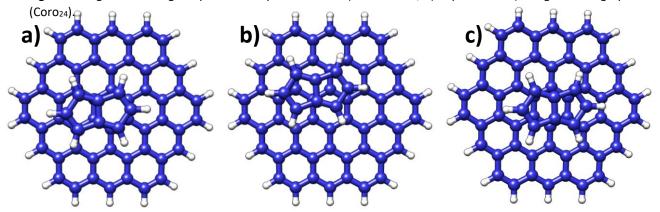



Figure S1: Figures showing the positions of pentalene on a) Hollow site, b) Top site and c) Bridge site on graphene surface

Figure S2: Figures showing the positions of pentalene on a) Hollow site, b) Top site and c) Bridge site on graphene surface (Coro₅₄).

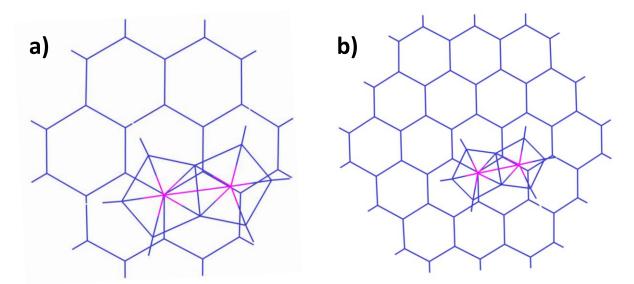


Figure S3: Top view of optimized structures of a) Pent-Coro₂₄ and b) Pent-Coro₅₄.

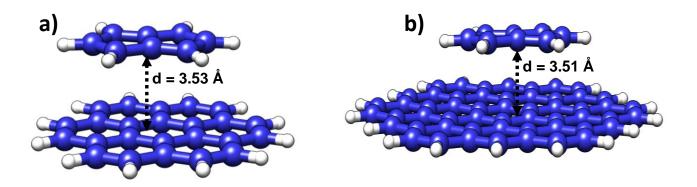


Figure S4: Side view of optimized structures of a) Pent-Coro₂₄ and b) Pent-Coro₅₄.

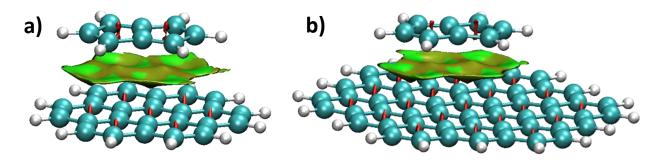


Figure S5: NCI plot showing weak stabilizing interactions represented as green discs a) Pent-Coro₂₄ and b) Pent-Coro₅₄.

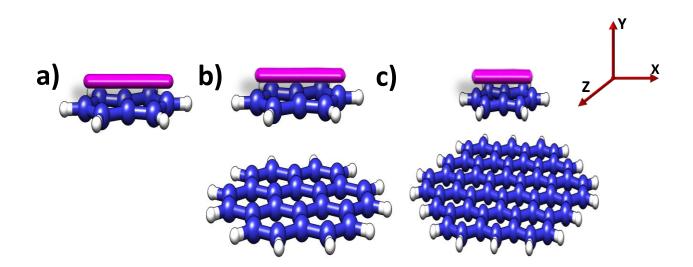
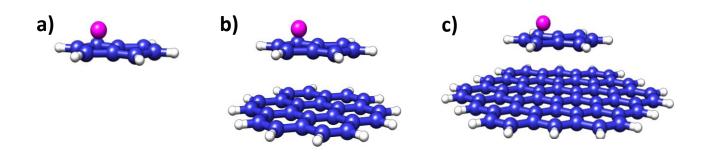



Figure S6: Schematic illustrations of NICS-X scan probes of a) Bare pentalene b) Pent-Coro24 and c) Pent-Coro54.

Figure S7: Schematic illustrations of NICS probes placed at 1 Å above the centroid of a) Bare pentalene, b) Pent-Coro₂₄ and c) Pent-Coro₅₄.

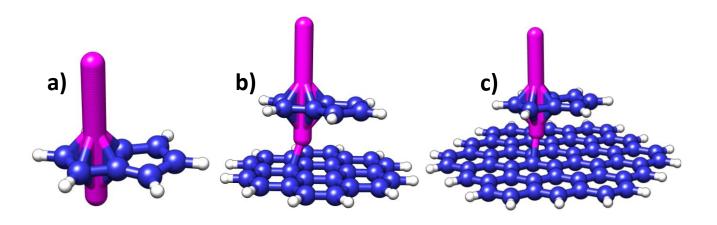
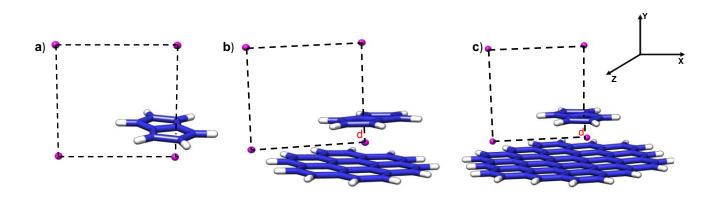
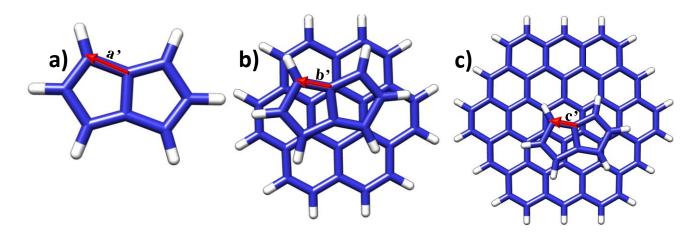




Figure S8: Schematic illustrations of NICS-Z scan probes of a) Bare pentalene, b) Pent-Coro₂₄ and c) Pent-Coro₅₄.

Figure S9: Schematic illustrations of the placement of integration plane across the selected bond of a) Bare pentalene b) Pent-Coro₂₄ and Pent-Coro₅₄. The value of distance (d) is equal to 1.8 Å.

Figure S10: GIMIC current strength values of a) Bare pentalene b) Pent-Coro₂₄ and c) Pent-Coro₅₄. Values of a'=-17.19 nA T⁻¹, b'=-17.25 nA T⁻¹ and c'=-16.55 nA T⁻¹.

Section D: References:

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
- 2. K. Raghavachari, Theor. Chem. Acc., 2000, 103, 361–363.
- 3. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- 4. S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 211–228.
- 5. A. D. Becke and E. R. Johnson, J. Chem. Phys., 2005, 123, 154101.
- 6. J. Da Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
- 8. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. von Ragué Schleyer, Chem. Rev., 2005, 105, 3842–3888.
- 9. A. Stanger, European J. Org. Chem., 2020, 3120–3127.
- 10. A. Stanger, J. Org. Chem., 2006, 71, 883–893.
- 11. R. Gershoni-Poranne and A. Stanger, Chem. Soc. Rev., 2015, 44, 6597–6615.
- 12. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. Van Eikema Hommes, J. Am. Chem. Soc., 1996, **118**, 6317–6318.
- 13. A. Stanger, G. Monaco and R. Zanasi, *ChemPhysChem*, 2020, **21**, 65–82.
- 14. A. Rahalkar, A. Stanger, "Aroma". This software may be downloaded free of charge from http://schulich.technion.ac.il/Amnon Stanger.htm.
- 15. J. Jusélius, D. Sundholm and J. Gauss, J. Chem. Phys., 2004, 121, 3952–3963.
- 16. S. Taubert, D. Sundholm and J. Jusélius, J. Chem. Phys., 2011, 134, 054123.
- 17. H. Fliegl, S. Taubert, O. Lehtonen and D. Sundholm, Phys. Chem. Chem. Phys., 2011, 13, 20500–20518.
- 18. T. M. Krygowski and M. K. Cyrański, Chem. Rev., 2001, 101, 1385–1420.
- 19. T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska and M. Palusiak, Chem. Rev., 2014, 114, 6383–6422.
- 20. J. Kruszewski and T. M. Krygowski, Tetrahedron Lett., 1972, 13, 3839–3842.
- 21. D. Geuenich, K. Hess, F. Köhler and R. Herges, Chem. Rev., 2005, 105, 3758–3772.
- 22. R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, 105, 3214–3220.
- 23. J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput., 2011, 7, 625–632.
- 24. K. Szalewicz, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 254–272.