PCCP

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supplementary Information – Single-photon ionization of SiC in the gas phase: experimental and *ab initio* characterizations of SiC⁺

B. Gans,*^{*a*} J. Liévin,^{*b*} P. Halvick,^{*c*} N. L. Chen,^{*a*} S. Boyé-Péronne,^{*a*} S. Hartweg,^{*d*} \$\$ G.A. Garcia,^{*d*} and J.C. Loison^{*c*}

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

1 Effect of the core and core-valence correlation and of the basis set on the $1^{+2}\Pi$ electronic state potential energy curve

In this section, we discuss the $1^{+2}\Pi$ double well shape, when going from *V*/AV5Z to *CV*/ACV6Z calculations. As shown in the left panel of Figure S1, the lowest minimum moves from the larger internuclear distance (1.94 Å) to the smaller one (1.74 Å). As a consequence the lowest vibrational levels are shifted to lower energies and the maximum vibrational overlaps occur at shorter distances, *i.e.* closer to the minima of the X and a states of SiC. The result of these changes on the calculated photoelectron spectra is illustrated in the right panels of Figure S1. Apart from a slight red shift of about 40 meV of both transitions, this does not change our conclusion described in the main paper concerning a "matching" with the experimental photoelectron spectrum for the $1^{+2}\Pi \leftarrow X^{3}\Pi$ transition, and an "unmatching" for the $1^{+2}\Pi \leftarrow a^{1}\Sigma^{+}$ transition.

2 Procedure used for estimating the photoionization probabilities

Table S1 gives, for the different states of SiC and SiC⁺, the weights *w* of the main configurations involved in single electron ionization processes. These weights correspond to the squares of the CI coefficients of the considered configurations in the MRCI/AV5Z wave functions obtained at R = 1.72 Å, close to the

 * Corresponding author: berenger.gans@universite-paris-saclay.fr

Fig. S1 On the left side, potential energy curves of the first two $^2\Pi$ states of SiC⁺ computed at the MRCI+Q/AV5Z (in green) and MRCI+Q/ACV6Z (in black) levels of theory. On the right side, corresponding calculated photoelectron spectra for the $1^{+2}\Pi \leftarrow X^3\Pi$ and $1^{+2}\Pi \leftarrow a^1\Sigma^+$ transitions using the same color code.

^a Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, F-91405 Orsay, France

^b Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing, Université Libre de Bruxelles, CP 160/09, B-1050 Bruxelles, Belgium

^c Institut des Sciences Moléculaires, CNRS, Université de Bordeaux, F-33400 Talence, France

^d Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin, F-91192 Gif sur Yvette, France ‡ current address: Institute of Physics, University of Freiburg, 79104 Freiburg, Germany

ground state geometry of SiC. Let us note that in the case of the $2^{+2}\Pi$ state, the main configuration with w = 0.77 does not obey the single electron ejection condition, and does not therefore contribute to the photoionization. The secondary configuration obeys the condition, but with a negligeable weight.

The probabilities *P* of the photoionizing transitions are provided in Table S2. They are given by the formula: $P = w_n \cdot w_c \cdot g_n \cdot g_c$, where w_n and w_c are the weights for the neutral and the cation, respectively, and g_n and g_c are the corresponding degeneracies, including the orbital and spin contributions. $P_{\text{norm.}}$ are the probabilities normalized with respect to the main $X^{+4}\Sigma^{-} \leftarrow X^{3}\Pi$ photoionizing transition.

Table S1 Main configurations and their corresponding weights (w) for the different states of SiC and SiC⁺ involved in photoionizing transitions implying single electron ejection.

State	w	Main configuration
X ³ Π	0.77	$[]7\sigma^{1}2\pi^{3}$
$a^{1}\Sigma^{+}$	0.71	$[]7\sigma^{0}2\pi^{4}$
$X^{+4}\Sigma^{-}$	0.87	$[]7\sigma^{1}2\pi^{2}$
$1^{+2}\Delta$	0.85	$[]7\sigma^{1}2\pi^{2}$
$1^{+2}\Pi$	0.71	$[]7\sigma^0 2\pi^3$
$1^{+2}\Sigma^{-}$	0.86	$[]7\sigma^{1}2\pi^{2}$
$1^{+2}\Sigma^{+}$	0.82	$[]7\sigma^{1}2\pi^{2}$
<u>2+2</u> П	0.77*	$[]7\sigma^2 2\pi^{1*}$
2 11	0.04	$[]7\sigma^0 2\pi^3$

* The main configuration does not lead to ionization (see text).

Table S2 Pertinent parameters for the photoionization probabilities of each photoionizing transitions used in the calculated photoelectron spectrum of Fig. 5 of the main paper.

Transitions	w _n	w _c	gn	gc	Р	P _{norm.} *
$X^{+}{}^{4}\Sigma^{-} \leftarrow X{}^{3}\Pi$	0.77	0.87	6	4	16.2	1.0
$1^{+2}\Delta \leftarrow X^{3}\Pi$	0.77	0.85	6	4	15.8	1.0
$1^{+2}\Pi \leftarrow X^{3}\Pi$	0.77	0.71	6	4	13.2	0.8
$1^{+2}\Sigma^{-} \leftarrow X^{3}\Pi$	0.77	0.86	6	2	8.0	0.5
$1^{+2}\Sigma^{+} \leftarrow X^{3}\Pi$	0.77	0.82	6	2	7.6	0.5
$2^{+2}\Pi \leftarrow X^{3}\Pi$	0.77	0.04	6	4	0.8	0.0
$1^{+2}\Pi \leftarrow a^{1}\Sigma^{+}$	0.71	0.71	1	4	2.0	0.1

* Normalized probability.