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S1 Stationary electronic spectroscopy
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Figure S1 Maximum of the S;«+S; absorption band of dyes 1 and 2 as a function of the electronic (left) and orientational
(right) components of the solvent polarisation. ACN: acetonitrile; CHX: cyclohexane; DCM: dichloromethane; DMSO:
dimethylsulfoxide; THF: tetrahydrofuran; TOL: toluene.
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Figure S2 Maximum of the S;—Sy emission band of dyes 1 and 2 as a function of the orientational component of the
solvent polarisation, and slopes of the best linear fit.



S2 Time-correlated single photon counting
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Figure S3 Time dependence of the fluorescence intensity measured by TCSPC upon 395 nm excitation of 1 in different
solvents and best fits of the convolution of a single exponential with the instrument response function (IRF). The resulting
lifetimes are given in the legend.



S3 Electronic transient absorption spectroscopy
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Figure S4 Transient electronic absorption spectra recorded at various time delays after excitation of dye 1 in cyclohexane
at 430 nm (top) and chloroform (middle) and THF at 400 nm (bottom). The negative stationary absorption and stimulated
emission spectra are shown in grey.



Wavelength / nm Wavelength / nm

700 600 500 400 350 700 600 500 400 350
o[ T T T T 7] T T T
— A (880 fs) 7
—_ B (4.8 ps)
1+ — 3% . — C (275 ps) -
@ ’ ) — D (780 ps)
o = — E (>2ns) B
5 ° 5
2L -
-1+ CHX N TOL
4 .
1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 16 18 20 22 24 26 28 30 14 16 18 20 22 24 26 28
Wavenumber / 10° cm’™ Wavenumber / 10° cm’™
Wavelength / nm Wavelength / nm
700 600 500 400 350 700 600 500 400 350
10 U T T T T 15 T T T T
— A (0.8 ps) _|
B (4 ps) 10k — A (0.4 ps) )
— C (30 ps) - B (2 ps)
— D (480 ps) — C (19 ps)
— Ex10 (>2ns) — — D (660 ps)
51 — Ex10 (>2ns) T

M/ 10°

DA/10°
» A MM O M A O ®

I \/ 1 - THF \/
1 1 1 1 1 1 1 1 1 1 1
16 18 20 22 24 26 28 30 16 18 20 22

Wavenumber / 10° cm’™ Wavenumber / 10° cm’™

Wavelength / nm

700 600 500 400 350
10 T T T T

8

AA/ 107
AP O N A~ O
T

1 1 1 1 1 1 1
16 18 20 22 24 26 28 30

Wavenumber / 10° cm’™

Figure S5 Evolution-associated difference absorption spectra (EADS) and time constants obtained from a global analysis
of the transient electronic absorption spectra recorded with dye 1 assuming a series of exponential steps with increasing
time constants. The time constant associated with the D—E step corresponds to the excited-state lifetime.
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Figure S6 Transient electronic absorption spectra recorded at various time delays after excitation of dye 2 in THF at
510nm (top) and in a PVB film at 430 nm (bottom). The negative stationary absorption and stimulated emission spectra
are shown in grey.
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Figure S7 Evolution-associated difference absorption spectra (EADS) and time constants obtained from a global analysis
of the transient electronic absorption spectra recorded with dye 2 assuming a series of exponential steps with increasing
time constants. The time constant associated with the C—D step corresponds to the excited-state lifetime.

S4 Stationary and time-resolved IR spectroscopy
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Figure S8 Stationary IR absorption spectra dyes 1 and 2 in chloroform.
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Figure S9 Transient IR absorption spectra recorded at various time delays after 430 nm excitation of dye 1 in toluene and
chloroform.
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Figure S10 Evolution-associated difference absorption spectra (EADS) and time constants obtained from a global anal-
ysis of the transient IR absorption spectra recorded with dye 1 assuming a series of exponential steps with increasing
time constants.
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Figure S11 Transient IR absorption spectra recorded at various time delays after 480 nm excitation of dye 2 in THF and
2-chloroethanol.
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Figure S12 Evolution-associated difference absorption spectra (EADS) and time constants obtained from a global anal-
ysis of the transient IR absorption spectra recorded with dye 2 assuming a series of exponential steps with increasing

time constants.
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S5 Femtosecond stimulated Raman spectroscopy (FSRS)

Details on the FSRS set up used here have been presented elsewhere.! Briefly, FSRS is a three pulse technique
with femtosecond actinic pump, femtosecond white-light probe and picosecond Raman pump pulses. The ac-
tinic pump excites the molecule in its electronic ground state to the higher excited state. Then a broadband
femtosecond probe pulse in the presence of a narrowband (10 cm™') picosecond Raman pulse stimulate the co-
herent Raman scattering process from the sample. These pulses were generated from the fundamental output
of a regenerative Ti:sapphire amplifier (Spectra Physics Spitfire ACE) driven by a Spectra Physics Mai Tai laser
oscillator. Part of this amplified pulse centered at 800 nm with repetition rate of 1kHz, duration of 120 fs, and
energy of 5mJ per pulse was used to drive a commercial optical parametric amplifier (OPA, Light Conversion
TOPAS Prime). This OPA generated the tuneable actinic pump pulse used to excite the sample. Another part
of the fundamental 800 nm beam was used to drive a second OPA which generated pulses at 1250 nm. This
1250 nm pulse was focused on to a 3 mm thick sapphire window to generate broadband white light continuum
(500-1400nm). The rest of the amplified fundamental beam was directed through a commercial second har-
monic bandwidth compressor (SHBC from Light Conversion) and then a picosecond configured OPA (TOPAS-PS
from Light Conversion) to generate the tuneable picosecond Raman pump.

The actinic pump, Raman pump and continuum probe pulses were focused and overlapped spatially and
temporally inside a 1 mm pathlength sample cell. Their spot sizes were adjusted to be around 250, 150 and
50 um respectively. The transmitted probe beam was dispersed using a high spectral resolution (<10cm™')
grating spectrometer (SPEX 500M) and then detected using a single CCD (Entwicklungsbiiro Stresing, 1024
pixel). The stimulated Raman signal from cyclohexane was used to calibrate the detector and overlap the
probe and Raman pulses. Line width of the Raman peak of cyclohexane at 802cm~! was used to determine
experimental spectral resolution, which is about 10 cm-1. Time delay between the actinic pump and probe
pulses was generated using a computer-controlled delay stage. Each spectrum was accumulated for 6 s using
a LabView controlled software. The actinic pump power used was 0.2 mW at 430nm. The Raman pulse was
tuned at 620 nm (2 mW) to be in resonance with the excited state absorption. Solvent response signal in the
presence of the actinic pump and probe pulses was used to determine time resolution of the experiment, which
is about 100 fs. All the spectra were recorded at 1 kHz. The actinic pump and Raman pump pulses were passed
through two synchronized mechanical choppers operating at 500 Hz and 250 Hz respectively. This resulted in
four different signals being measured: i) Raw FSRS (Probe + Raman + Actinic); ii) Transient absorption (Probe
+ Actinic); iii) Ground state FSRS (Probe + Raman) and iv) Probe reference (probe only). When all the three
pulse (Actinic pump, Raman pump and Probe) are present on the sample, we detect the unprocessed FSRS signal
as 10g(Iraman+Actinic+Probe /Iprobe ).  Therefore, the unprocessed FSRS signal contains information on the excited
state Raman spectra along with the ground state Raman (10g(/raman-+probe/Iprobe)) , transient absorption (TA)
(log(Iactinic-+Probe /Iprobe )) and nonlinear background. Therefore, the unprocessed FSRS data has been subtracted
from its ground state Raman and TA contributions in order to extract the excited state Raman signal. Then
the resultant difference spectra (say, raw excited state Raman signal) are baseline corrected to obtain the raw
excited state Raman signal as shown in Figure S13. This same procedure is followed for all the pump-probe
time delays and for all the solvents.
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Figure S13 Baseline correction of raw FSRS signal of dye-1 in THF.
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S6 Quantum-chemical calculations
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Figure S14 Comparison of the frontier molecular orbitals of dye 1 and its dipolar analogue 1d. For both dyes, the S,
state is associated with a one-electron HOMO-LUMO transition.
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Table S1 Quantum-chemical calculations of the symmetric (s) and antisymmetric (a) stretching frequencies (in cm~!) of
1 and its dipolar analogue (1d) in the Sy and S, states. The IR intensities (in km/mol) and Raman intensities (in A*/AMU)
are in given between brackets in red and blue. The changes observed by going from 1(S;) to 1d(S;) should be equivalent
to those occurring upon partial ES-SB.

-C=C-(s) -C=C-(a) -C=N(s) -C=N(a)
1(Sy) 2193 (0, 10%) 2191 (1274, 0) 2240 (0, 3000) 2240 (134, 0)
1d(Spy) 2190 (790, 5.5-10%) 2200 (110, 3400) 2240 (69, 1500)
1(S)) 2148 (0, 109 1992 (3800, 0) 2220 (0, 1.4-10%) 2216 (2360, 0)
1d(S;) 2113 (1680, 1.5-10°) 2006 (350, 8.4-10°) 2206 (1100, 1.8-10%)

Table S2 Quantum-chemical calculations of the symmetric (s) and antisymmetric (a) stretching frequencies (in cm~!) of
2, 2 with an electric dipole field of 1 GV/m, and the dipolar analogue (2d). The IR intensities (in km/mol) are in given
between brackets. ’In’ and ’out’ designate the in-phase and out-of-phase vibrations. The changes observed by going
from 2(S;) to 2(S,)+field should be equivalent to those occurring upon partial ES-SB. The changes observed by going
from 2(S;) to 2d(S;) should be equivalent to those occurring upon full ES-SB.

-C=N(a, out) -C=N(s, out) -C=N(a, in) -C=N(s, in)
2(Sp) 2212 (35) 2212 (0.2) 2220 (440) 2222 (0.0)
2d(Sp) 2206 (41) 2216 (325)
2(Sy) 2181 (212) 2185 (1.5) 2202 (560) 2210 (0.2)
2(S;) +field 2175 (90) 2190 (205) 2200 (400) 2213 (67)
2d(S;) 2146 (100) 2181 (170)
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Figure S15 Comparison of the frontier molecular orbitals of dye 2 and its dipolar analogue 2d. For both dyes, the S;
state is associated with a one-electron HOMO-LUMO transition.
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Figure S16 Energies of the first singlet excited states of dyes 1 and 2 determined from TD-DFT calculations. The
oscillator strengths, f, are for one-photon transitions.
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