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involves unusual pathways

Vladimir I. Novoderezhkin

S1. Standard Redfield theory

We consider molecular aggregate containing N molecules. The one-exciton Hamiltonian in the site 
representation is:
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where ωj=ωj
0+λj is the energy of the Franck-Condon transition of the j-th site (including the zero-phonon 

energy ωj
0
 and reorganization energy λj), Mjj' is the interaction energy between the j-th and j'-th sites. 

Supposing that the mixing of the electronic excitations is not dependent on the phonon coordinates, it is 
possible to switch to the exciton representation by diagonalization of the electronic Hamiltonian (S1). This 
leads us to the wavefunctions cj

k giving the participation of the j-th site in the k-th exciton state and to the 
new set of energies k=ωk

0+λkkkk corresponding to transitions from the ground to the k-th exciton state 
(where transition frequencies ωk

0 correspond to the zero-phonon lines in the exciton representation and λkkkk 
is the reorganization energy of the k-th exciton state). The excited-state dynamics is then given by equation 
for the density matrix in the exciton representation:     
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with the Redfield relaxation tensor [1,2]:
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where indices k, p, s number the exciton eigenstates, pkk and pkk' are the density matrix elements 
corresponding to populations and coherences in the exciton representation; ωkk'

0=ωk
0ωk'

0 is the energy gap 
between the two states, Ckk'k''k''' is the spectral density of electron-phonon coupling in the exciton 
representation: 
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where Cj(ω) is the spectral density in the site-representation. Notice that the Redfield equation can include  
arbitrary spectral density Cj(ω) and arbitrary temperatures. Initial conditions corresponding to excitation of 
the j-th site are pkk'= cj

kpjjcj
k'. Notice that initial localization at one site corresponds to coherent excitation of 

several exciton states (by creating populations pkk together with the coherences pkk').   After calculating the 
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evolution of the exciton populations pkk and coherences pkk’ according to Eq. (S2) we can switch back to the 
site representations to obtain the kinetics of the site populations pii=ci

kpkk'ci
k' and site coherences pij=ci

kpkk'cj
k'.

In Eq. (S2) the phonons do not perturb the exciton wavefunctions, but induce transfers between the 
exciton eigenstates. The rates of the transfers between one-exciton populations, between coherences, and 
population-coherences transfers (S3) are calculated supposing a weak coupling to phonons and treating the 
exciton-phonon interaction as a perturbation.    

Sometimes the so-called secular approximation is used, keeping only the Rkk'pp' elements with  
ωkk'

0ωpp'
0=0. Notice that the dynamics of populations and coherences can change dramatically when 

switching from the full to secular Rkk'pp' tensor. 

S2. Modified Redfield theory

The modified Redfield theory [3] is restricted to one-exciton population transfers, but the relaxation tensor is 
calculated supposing a more realistic description of the exciton-phonon coupling. More specifically, the 
diagonal (in the exciton representation) part of exciton-phonon coupling is taken into account non-
perturbatively, thus giving a realistic line shape for the exciton levels. The off-diagonal part (responsible for 
transitions between the exciton states) is treated as a perturbation. The exciton wavefunctions are still 
independent of the phonon coordinates. Moreover, the phonons are supposed to remain equilibrated during 
the electronic energy transfer. In the Markovian limit (used in our study) the k'k population transfers are 
given by the tensor Rkkk'k' [3,4]: 
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where F(t) and A(t) are line-shape functions corresponding to fluorescence of the donor state and absorption 
of the acceptor, respectively, while V describes the interaction between donor and acceptor, ωk

0 is the zero-
phonon energy of the k-th exciton state. Other quantities are related to the exciton-phonon spectral density in 
the site representation Cj() : 
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where gj(t) and λj are line-broadening function and reorganization energy of the j-th diabatic state. 

If the donor and acceptor states are localized at the j-th and i-th sites (i.e. cj
k'=1 and ci

k=1) then the transfer 
between them is given by the Förster formula, that can be obtained from (S5) by replacing the interaction 
term by [4,5]

                                                                                                                                    (S7) 
2
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where Mij is the interaction energy corresponding to a weak coupling between the localized sites i and j. 
Switching to the Fourier-transforms of F(t) and A(t) we can rewrite the integral in a form of donor-acceptor 
spectral overlap [6].  The standard Förster formula can be generalized to the case of energy transfer between 
two weakly connected clusters [5,7]. The rate of energy transfer from the k'-th exciton state of one cluster to 
the k-th state of the other cluster is given by (S5) with the interaction term: 
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where i and j designate molecules belonging to different clusters. In this generalized Förster formula, the 
donor and acceptor states k' and k can have an arbitrary degree of delocalization (corresponding to arbitrarily 
strong excitonic interactions within each cluster), but the inter-cluster interactions Mij are supposed to be 
weak. In the combined Redfield-Förster approach [5,7-9] the relaxation dynamics within strongly coupled 
clusters is calculated with the modified Redfield theory, whereas transfers between these clusters (with weak 
inter-clusters couplings) are modeled by the generalized Förster theory.

S3. Coherent modified Redfield theory

The coherent modified Redfield (cmR) approach [10-12] is a secular master equation describing the 
dynamics of the one-exciton populations kk  and the decay of the coherences kk' between the exciton states. 
Non-secular terms, i.e. transfers between coherences and transfers between populations and coherences are 
not included. As in the original modified Redfield model [3] the diagonal exciton-phonon coupling is 
included explicitly, whereas the off-diagonal phonon-induced fluctuations (inducing relaxation between the 
exciton states) are treated perturbatively. Population dynamics is given by the same equation as in modified 
Redfield (S5), whereas the decay of the coherences is given by [12]:
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where Rkkkk is the inverse lifetime of the k-th exciton state (determined by the sum of the kk' relaxation 
rates Rk'k'kk), Γkk' is pure dephasing. In the Markovian approximation the time-independent dephasing term is 
(bearing in mind that Im{g(1)(∞)}=):
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This way a coherent modified Redfield theory describes the transfers between the one-exciton populations 
(S5) together with the decay of the coherences (S9). Unfortunately, the non-secular terms, i.e. transfers 
between coherences as well as transfers between populations and coherences are not included. These terms 
are important to describe transfers between the weakly coupled and isoenergetic sites, where non-secular 
transfers maintain long-lived coherences between the exciton (delocalized) eigenstates. These coherences 
keep the excitation localized, whereas in the secular approximation (where coherences quickly decay without 
being ‘re-pumped’ from the populations) initially localized excitations exhibit rather fast delocalization 
between the donor and acceptor states. In the site representation this looks like unrealistically fast energy 
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transfer [13]. The cmR theory suffers from such a ‘resonant artifact’ that is also present in the original 
modified Redfield (where the coherences are not included at all). To circumvent it, the cmR can be combined 
with generalized Förster theory, or with the small polaron quantum master equation [12]. In such combined 
approaches the most questionable point is how to determine the crossover between the two energy transfer 
regimes. The simplest way is to split the whole systems into compartments with the exciton couplings Mjj' 
exceeding some critical value, Mc [5,7]. Then the dynamics within the clusters with Mjj'>Mc can be described 
with the Redfield theory, whereas the transfers between these clusters (with inter-cluster couplings Mjj'<Mc) 
are treated with the generalized Förster theory. The critical value Mc can be chosen intuitively [5,7,14-19] or 
by comparing the results with those of exact methods, like hierarchical equation of motion (HEOM) [13,20-
23].  

S4. Scaled hierarchical equation with low-temperature corrections  

The hierarchical equation of motion (HEOM) is restricted to some special forms of the spectral density. We 
use the spectral density in the form of an overdamped Brownian oscillator (with reorganization energy λj and 
damping constant γj):  
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j

2
j

jj 2)(C





In this case the scaled HEOM for the reduced density operator is [24]: 
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where n denote auxiliary operators dependent on the set of integers describing the state of the phonon bath 
of the sites from j=1 to N; n={n10,..n1K,..njk,..nN0,..nNK}; njk

={… njk1…}; the index k (not to be confused 
with the index k labeling the exciton states in previous sections!) numbers the low-temperature correction 
terms from k=0 to K; θ=kBT, where kB is the Boltzmann constant, T is the temperature. The auxiliary 
operators σn at n={0,0,…0} are equal to the reduced density operator . Here Vσ denotes a commutator, i.e. 
Vσ= VσσV, where Vj=jj. Notice that Eq. (S12) implies that the phonons associated with different sites 
are uncorrelated. The dynamics of the one-exciton populations ii and coherences ij (in the site 
representation) is given by:
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with ωij=ωi0−ωj0., and with some initial conditions for ij describing the state of the system after impulsive 
excitation. For example, excitation of the j-th site corresponds to σii

n=1 for n={0,0,…0} and σii
n=0 for other n 

sets. If the sum of njk exceeds Nc, then the terms with G, Gik, and Lik in Eqs. (S12) and (S13) are set to zero 
[25]. The depth of the hierarchy Nc and the number of the Matsubara frequencies K should be chosen in order 
to get converging results.  The scaled HEOM gives converging results already at small cutoff values Nc. In 
our numerical examples one can restrict to Nc=3-4 (for Nc>4 there are no visible changes in the kinetics). At 
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room temperature there is only small difference between the K=0 and K=1 cases (where K is the number of 
temperature correction terms). Therefore we calculate the scaled HEOM kinetics with Nc=3, K=0.  

S5. Model of trimeric LHCII complex

We use the exciton model of LHCII trimer developed in ref. 16. Table S1 shows the pigment-pigment 
couplings (the same as in ref.16). Table S2 shows the site energies for the first subunit (we suppose the same 
sets of the unperturbed site energies for the second and third subunits). Notice that we formally include the 
b601' site to the first subunit (as in ref. 16). 

Table S1. Interaction energies Mnm (cm1) for the trimeric LHCII complex, calculated in the point-dipole 
approximation (data taken from ref.16).    

   a602    a603     a610     a611    a612     b608    b609   b601'   a613    a614    a604     b605    b606    b607  
a602  
a603  
a610  
a611  
a612  
b608  
b609  
b601' 
a613  
a614  
a604  
b605  
b606  
b607  

         0   38.11   -11.39    9.69    15.83    -5.84  -19.25   -0.35   -4.96    0.69      6.42    -0.71     5.60     7.13
  38.11          0    12.97   -2.70     -0.76     6.72   96.66   -0.71    2.68   -6.70     -3.28     1.13    -8.89     1.23
 -11.39   12.97          0  -24.96    23.10   61.97     3.86   -4.20    7.21   -1.55     -4.18     1.61    -3.28    -0.14
    9.69    -2.70  -24.96          0  126.92     4.35     4.30   -0.88   -6.15    4.55     -3.80     1.33    -2.52    -2.78
   15.83   -0.76   23.10  126.92          0    -1.08    -2.57    1.41   -0.47   -0.18     4.67    -2.85     3.10      3.07
   -5.84     6.72   61.97     4.35     -1.08          0   36.07    5.82   -2.01    1.30     -2.76    -5.13    -4.99    -4.43
 -19.25   96.66     3.86     4.30     -2.57   36.07          0   38.15   -2.92    2.33    -7.28    -0.77    -0.16  -11.99
   -0.35    -0.71   -4.20    -0.88      1.41     5.82   38.15          0    0.90    0.17      2.69    -2.26     2.72     0.30
   -4.96     2.68     7.21    -6.15    -0.47    -2.01    -2.92     0.90         0  -50.22     2.12   -1.40     1.47     2.20
    0.69    -6.70    -1.55     4.55    -0.18     1.30     2.33     0.17  -50.22         0    -3.42    0.37     -2.16    -3.25
    6.42    -3.28    -4.18    -3.80     4.67    -2.76    -7.28     2.69    2.12   -3.42           0    3.35  104.56   35.93
   -0.71     1.13     1.61     1.33    -2.85     -5.13   -0.77    -2.26   -1.40    0.37      3.35         0    29.71    -4.47
    5.60    -8.89    -3.28    -2.52     3.10    -4.99    -0.16     2.72    1.47   -2.16  104.56   29.71         0    59.38
    7.13     1.23    -0.14    -2.78     3.07    -4.43  -11.99     0.30    2.20   -3.25    35.93    -4.47   59.38          0

a602'  
a603'  
a610'  
a611'  
a612'  
b608'  
b609'  
b601'' 
a613'  
a614'  
a604'  
b605'  
b606'  
b607'  

    1.11    8.14     2.95      0.55    -0.69     0.08  -10.66    49.64   -1.20   -0.86   -0.90    0.66    -0.82     0.53
    5.22   -6.53    -0.91     -1.21     1.29    -0.54    0.23     -5.89   -0.48   -0.91    2.56   -0.26     2.80     3.18
    0.76   -2.05    -0.68     -0.36     0.51     0.54    2.25     -5.95    0.07   -0.01     0.54    0.06     0.25    -0.20
   -0.51   -0.15    -1.13     -0.24     0.57     2.70    4.63    24.89    0.45    0.29     0.27   -0.32    -0.78    -0.85
   -0.51    2.40     1.14      0.42    -0.29    -0.61   -3.19     9.13    -0.66   -0.07    -0.67    0.48    -0.36    -0.43
   -1.15    1.32     0.50      0.44    -0.11     0.40   -0.23     2.78    -0.17    0.38    -0.71    0.22    -0.67    -0.66
   -2.33    2.33     0.68      0.71    -0.41     0.42   -0.34     3.79    -0.17    0.43    -1.05    0.18    -0.99    -0.94
    0.22   -1.45    -0.34    -0.09     0.35     0.46    0.89     -0.43    0.23     0.73    -0.25    0.16    -0.34    -0.59
   -0.44   -4.36    -1.19     0.22    -0.93     0.38    5.24   -10.79    2.00     0.97    -1.08   -0.97    -0.89     8.18
   -2.51    4.15     0.70      0.81    -0.76     0.74   -4.57     3.59    0.49     1.11     -3.91    3.43    -5.63     0.73
    1.15   -0.50    -0.19    -0.30    -0.01    -0.59   -0.26    -2.51   -0.25    -0.68     0.87   -0.49     1.07     1.34
   -0.34    0.50     0.22      0.17    -0.04     0.04   -0.23     0.77   -0.22     0.12    -0.29    0.07    -0.20    -0.20
    1.17   -0.41    -0.23    -0.36     0.10    -0.41   -0.12    -1.87   -0.23    -0.66     0.80   -0.24     0.82     0.88
    1.82   -0.97    -0.43    -0.56     0.20    -0.47   -0.00    -2.49    0.22    -0.68     1.21   -0.34     1.20     1.51

a602''  
a603''  
a610''  
a611''  
a612''  
b608''  
b609''  
b601 
a613''  
a614''  
a604''  
b605''  
b606''  
b607''  

    1.11    5.22     0.76    -0.51     -0.51   -1.15   -2.33     0.22    -0.44    -2.51     1.15   -0.34     1.17    1.82
    8.14   -6.53    -2.05    -0.15     2.40    1.32     2.33    -1.45    -4.36     4.15    -0.50    0.50    -0.41   -0.97
    2.95   -0.91    -0.68    -1.13     1.14    0.50    0.68     -0.34    -1.19     0.70    -0.19    0.22    -0.23   -0.43
    0.55   -1.21    -0.36    -0.24     0.42    0.44     0.71    -0.09     0.22     0.81    -0.30    0.17    -0.36   -0.56
   -0.69    1.29     0.51      0.57    -0.29   -0.11   -0.41     0.35    -0.93    -0.76    -0.01   -0.04     0.10    0.20
    0.08   -0.54     0.54     2.70     -0.61    0.40    0.42     0.46     0.38      0.74    -0.59    0.04    -0.41   -0.47
 -10.66    0.23     2.25     4.63     -3.19   -0.23   -0.34     0.89     5.24    -4.57    -0.26   -0.23    -0.12   -0.00
  49.64   -5.89    -5.95    24.89     9.13    2.78     3.79    -0.43  -10.79    3.59    -2.51    0.77    -1.87   -2.49
   -1.20   -0.48     0.07      0.45    -0.66   -0.17   -0.17     0.23     2.00     0.49    -0.25   -0.22    -0.23    0.22
   -0.86   -0.91    -0.01     0.29    -0.07    0.38     0.43     0.73     0.97     1.11    -0.68    0.12    -0.66   -0.68
   -0.90    2.56     0.54      0.27    -0.67   -0.71   -1.05    -0.25    -1.08    -3.91     0.87   -0.29     0.80    1.21
    0.66   -0.26     0.06     -0.32     0.48    0.22    0.18      0.16    -0.97     3.43    -0.49    0.07    -0.24   -0.34
   -0.82    2.80     0.25     -0.78    -0.36   -0.67   -0.99    -0.34    -0.89    -5.63    1.07   -0.20     0.82     1.20
    0.53    3.18    -0.20     -0.85    -0.43   -0.66   -0.94    -0.59     8.18     0.73     1.34   -0.20     0.88     1.51
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Table S2. The site energies ωj (cm1) corresponding to purely electronic transitions, i.e. not including a 
reorganization energy shift.  

Site energies
a602  
a603  
a610  
a611  
a612  
b608  
b609  
b601' 
a613  
a614  
a604  
b605  
b606  
b607  

    15097  
    15227  
    15013  
    15055 
    15037     
    15628 
    15586      
    15754 
    15115 
    15204
    15400   
    15544  
    15716
    15577                                                 

The data from Tables S1 and S2 is enough to build the one-exciton Hamiltonian (S1). Switching to the 
exciton representation (by diagonalization of (S1)) gives us the exciton energies energies k and the 
wavefunctions cj

k allowing a calculation of the Redfield relaxation rates (S3), (S5) or (S9). The Redfield-
Förster approach implies diagonalization of Hamiltonian and calculation of the Redfield relaxation tensor for 
each compartment. The transfers between compartments are given by generalized Förster rates (given by 
(S5) and (S8)). The HEOM kinetics (S12) are calculated in the site representation. In our modeling both the 
Redfield and HEOM kinetics are calculated using the electron-phonon spectral density (S11) with λj=300 
cm1 and γj=500 cm1. (where the λj

 and γj values are supposed to be the same for all the sites). The kinetics 
are calculated for room temperature (T=293K). Notice that the site energies in Table S2 are different from 
the original energy set obtained in ref. 16. The original energies emerged from the Redfield modeling with 
realistic spectral density, whereas in the present study we use a simplified spectral density (S11) enabling us 
to use the HEOM equation (S12). This spectral density gives a reduced reorganization shift that can be 
compensated by some uniform shifting of the site energies (as explained in ref. 26). In Table S2 we show the 
thus adjusted (shifted) site energies.    

The calculation steps for the Redfield approach include: 
(i) building of one-exciton Hamiltonian (S1); 
(ii) diagonalization of Hamiltonian; 
(iii) calculation of relaxation tensor (S3, S5, or S9); 
(iv) solving of the Redfield equation (S2).      

The calculation steps for the Redfield-Förster approach include:
(i) diagonalization of Hamiltonian and calculation of relaxation tensor for each compartment;
(ii) calculation of generalized Förster rates for the transfers between compartments;
(iii) solving of equation (S2), where the k-th and p-th states may belong to the same or to different     

compartments (transfers between compartments are incoherent (i.e. pkk'= kk' and ppp'= pp') with the 
Rkkpp elements corresponding to the p→k generalized Förster rates). 

 
The calculation steps for the HEOM approach include:

(i) building of one-exciton Hamiltonian (S1); 
(ii) solving of hierarchical equation (S13) in the site representation . 
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