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Excitation energy equilibration in trimeric LHCII complex
involves unusual pathways

Vladimir 1. Novoderezhkin

S1. Standard Redfield theory

We consider molecular aggregate containing N molecules. The one-exciton Hamiltonian in the site
representation is:
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where w=w’+A; is the energy of the Franck-Condon transition of the j-th site (including the zero-phonon
energy o and reorganization energy A;), Mj; is the interaction energy between the j-th and j'-th sites.

Supposing that the mixing of the electronic excitations is not dependent on the phonon coordinates, it is
possible to switch to the exciton representation by diagonalization of the electronic Hamiltonian (S1). This
leads us to the wavefunctions c} giving the participation of the j-th site in the k-th exciton state and to the
new set of energies W= *+Aq corresponding to transitions from the ground to the k-th exciton state
(where transition frequencies w,” correspond to the zero-phonon lines in the exciton representation and A
is the reorganization energy of the k-th exciton state). The excited-state dynamics is then given by equation
for the density matrix in the exciton representation:
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with the Redfield relaxation tensor [1,2]:
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where indices k, p, s number the exciton eigenstates, py, and pye are the density matrix elements
corresponding to populations and coherences in the exciton representation; wy’=w’—m,° is the energy gap
between the two states, Cyeer i the spectral density of electron-phonon coupling in the exciton
representation:
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where Cj(w) is the spectral density in the site-representation. Notice that the Redfield equation can include
arbitrary spectral density Cj(®w) and arbitrary temperatures. Initial conditions corresponding to excitation of
the j-th site are o= c}p;ici. Notice that initial localization at one site corresponds to coherent excitation of
several exciton states (by creating populations py, together with the coherences py). After calculating the
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evolution of the exciton populations py and coherences py according to Eq. (S2) we can switch back to the
site representations to obtain the kinetics of the site populations p;=c*pyec and site coherences p;=ci*piici*.

In Eq. (S2) the phonons do not perturb the exciton wavefunctions, but induce transfers between the
exciton eigenstates. The rates of the transfers between one-exciton populations, between coherences, and
population-coherences transfers (S3) are calculated supposing a weak coupling to phonons and treating the
exciton-phonon interaction as a perturbation.

Sometimes the so-called secular approximation is used, keeping only the Ry, elements with
Ow’—0,,"=0. Notice that the dynamics of populations and coherences can change dramatically when
switching from the full to secular Ry, tensor.

S2. Modified Redfield theory

The modified Redfield theory [3] is restricted to one-exciton population transfers, but the relaxation tensor is
calculated supposing a more realistic description of the exciton-phonon coupling. More specifically, the
diagonal (in the exciton representation) part of exciton-phonon coupling is taken into account non-
perturbatively, thus giving a realistic line shape for the exciton levels. The off-diagonal part (responsible for
transitions between the exciton states) is treated as a perturbation. The exciton wavefunctions are still
independent of the phonon coordinates. Moreover, the phonons are supposed to remain equilibrated during
the electronic energy transfer. In the Markovian limit (used in our study) the k'—>k population transfers are
given by the tensor Ry [3,4]:
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where F(t) and A(t) are line-shape functions corresponding to fluorescence of the donor state and absorption
of the acceptor, respectively, while V describes the interaction between donor and acceptor, ®\° is the zero-
phonon energy of the k-th exciton state. Other quantities are related to the exciton-phonon spectral density in
the site representation Cj(o) :
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where gj(t) and A, are line-broadening function and reorganization energy of the j-th diabatic state.

If the donor and acceptor states are localized at the j-th and i-th sites (i.e. ¢*=1 and ¢;*=1) then the transfer
between them is given by the Forster formula, that can be obtained from (S5) by replacing the interaction
term by [4,5]
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where M is the interaction energy corresponding to a weak coupling between the localized sites i and j.
Switching to the Fourier-transforms of F(t) and A(t) we can rewrite the integral in a form of donor-acceptor
spectral overlap [6]. The standard Forster formula can be generalized to the case of energy transfer between
two weakly connected clusters [5,7]. The rate of energy transfer from the k'-th exciton state of one cluster to

the k-th state of the other cluster is given by (S5) with the interaction term:
2
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where i and j designate molecules belonging to different clusters. In this generalized Forster formula, the
donor and acceptor states k' and k can have an arbitrary degree of delocalization (corresponding to arbitrarily
strong excitonic interactions within each cluster), but the inter-cluster interactions M;; are supposed to be
weak. In the combined Redfield-Forster approach [5,7-9] the relaxation dynamics within strongly coupled
clusters is calculated with the modified Redfield theory, whereas transfers between these clusters (with weak
inter-clusters couplings) are modeled by the generalized Forster theory.

S3. Coherent modified Redfield theory

The coherent modified Redfield (cmR) approach [10-12] is a secular master equation describing the
dynamics of the one-exciton populations py, and the decay of the coherences py between the exciton states.
Non-secular terms, i.e. transfers between coherences and transfers between populations and coherences are
not included. As in the original modified Redfield model [3] the diagonal exciton-phonon coupling is
included explicitly, whereas the off-diagonal phonon-induced fluctuations (inducing relaxation between the
exciton states) are treated perturbatively. Population dynamics is given by the same equation as in modified
Redfield (S5), whereas the decay of the coherences is given by [12]:
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where Ry is the inverse lifetime of the k-th exciton state (determined by the sum of the k—k' relaxation
rates Rywik), Lk 18 pure dephasing. In the Markovian approximation the time-independent dephasing term is
(bearing in mind that Im{g("(c0) }=—1):
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This way a coherent modified Redfield theory describes the transfers between the one-exciton populations
(S5) together with the decay of the coherences (S9). Unfortunately, the non-secular terms, i.e. transfers
between coherences as well as transfers between populations and coherences are not included. These terms
are important to describe transfers between the weakly coupled and isoenergetic sites, where non-secular
transfers maintain long-lived coherences between the exciton (delocalized) eigenstates. These coherences
keep the excitation localized, whereas in the secular approximation (where coherences quickly decay without
being ‘re-pumped’ from the populations) initially localized excitations exhibit rather fast delocalization
between the donor and acceptor states. In the site representation this looks like unrealistically fast energy
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transfer [13]. The cmR theory suffers from such a ‘resonant artifact’ that is also present in the original
modified Redfield (where the coherences are not included at all). To circumvent it, the cmR can be combined
with generalized Forster theory, or with the small polaron quantum master equation [12]. In such combined
approaches the most questionable point is how to determine the crossover between the two energy transfer
regimes. The simplest way is to split the whole systems into compartments with the exciton couplings Mj;
exceeding some critical value, M, [5,7]. Then the dynamics within the clusters with M;;>M, can be described
with the Redfield theory, whereas the transfers between these clusters (with inter-cluster couplings M;;<M,)
are treated with the generalized Forster theory. The critical value M, can be chosen intuitively [5,7,14-19] or
by comparing the results with those of exact methods, like hierarchical equation of motion (HEOM) [13,20-
23].

S4. Scaled hierarchical equation with low-temperature corrections
The hierarchical equation of motion (HEOM) is restricted to some special forms of the spectral density. We

use the spectral density in the form of an overdamped Brownian oscillator (with reorganization energy A; and
damping constant v;):

In this case the scaled HEOM for the reduced density operator is [24]:
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where o" denote auxiliary operators dependent on the set of integers describing the state of the phonon bath
of the sites from j=1 to N; n={ny,..ng,..Njk,..NNo,..Nnk | ; N=1{... njEl...}; the index k (not to be confused
with the index k labeling the exciton states in previous sections!) numbers the low-temperature correction
terms from k=0 to K; 0=kgT, where kp is the Boltzmann constant, T is the temperature. The auxiliary
operators " at n={0,0,...0} are equal to the reduced density operator p. Here VX6 denotes a commutator, i.e.
V*o= Vo—-cV, where Vi=[j)(j|. Notice that Eq. (S12) implies that the phonons associated with different sites
are uncorrelated. The dynamics of the one-exciton populations o; and coherences o (in the site
representation) is given by:
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with @;=wip—wj., and with some initial conditions for c; describing the state of the system after impulsive

excitation. For example, excitation of the j-th site corresponds to ;;"=1 for n={0,0,...0} and ;"=0 for other n

sets. If the sum of n; exceeds N, then the terms with G, Gy, and Li; in Egs. (S12) and (S13) are set to zero

[25]. The depth of the hierarchy N, and the number of the Matsubara frequencies K should be chosen in order

to get converging results. The scaled HEOM gives converging results already at small cutoff values N.. In

our numerical examples one can restrict to N.=3-4 (for N:>>4 there are no visible changes in the kinetics). At
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room temperature there is only small difference between the K=0 and K=1 cases (where K is the number of
temperature correction terms). Therefore we calculate the scaled HEOM kinetics with N.=3, K=0.

SS. Model of trimeric LHCII complex

We use the exciton model of LHCII trimer developed in ref. 16. Table S1 shows the pigment-pigment
couplings (the same as in ref.16). Table S2 shows the site energies for the first subunit (we suppose the same
sets of the unperturbed site energies for the second and third subunits). Notice that we formally include the
b601' site to the first subunit (as in ref. 16).

Table S1. Interaction energies M,,, (cm™') for the trimeric LHCII complex, calculated in the point-dipole

approximation (data taken from ref.16).

a602 a603 a6l0 a6ll a612 b608 b609 b601' a613 a6l4 a604 b605 b606 b607
a602 0 38.11 -11.39 9.69 15.83 -5.84 -1925 -035 -496 0.69 642 -071 560 7.13
a603 38.11 0 1297 270 -0.76 6.72 96.66 -0.71 2.68 -6.70 -328 1.13 -8.89 123
a610 | :11.39 12.97 0 -2496 23.10 6197 3.86 420 721 -155 -418 161 -328 -0.14
a611 9.69 -2.70 -24.96 0 12692 435 430 -0.88 -6.15 455 -3.80 133 -252 -2.78
a612 15.83 -0.76 23.10 126.92 0 -1.08 -257 141 -047 -0.18 467 -2.85 3.10 3.07
b608 584 672 6197 435 -1.08 201 130 -276 -5.13 -499 -4.43
b609 | -19.25 96.66 3.86 430 -2.57 292 233 -728 -0.77 -0.16 -11.99
b601' | -035 -0.71 -420 -0.88 141 090 0.17 269 -226 272 030
a613 496 268 721 -6.15 -047 -2.01 -292 090 0 -50.22 [2.12 =140 147 220
a614 0.69 -6.70 -1.55 455 -0.18 130 233 0.7 -5022 0
a604 642 -328 -4.18 -3.80 4.67 -2.76 -7.28 2.69| 2.12 -3.42
b605 071 113 161 133 -285 -513 -0.77 -2.26 -1.40 037
b606 560 -8.89 -328 -252 310 -499 -0.16 2.72 147 -2.16
b607 713 123 -0.14 -2.78 3.07 -4.43 -11.99 030 220 -3.25
a602' 111 814 295 055 -069 008 -10.66 4964 -1.20 -086 -090 0.66 -0.82 0.53
a603' 522 653 -091 -121 129 -0.54 023 -589 -048 -091 256 -026 280 3.18
a610' 0.76 -2.05 -0.68 -036 0.51 054 225 -595 0.07 -0.01 054 006 025 -0.20
a611' 0.51 -0.15 -1.13  -024 0.57 270 4.63 045 029 027 -032 -0.78 -0.85
a612' -0.51 240 1.14 042 -029 -0.61 -3.19 9.3 -0.66 -0.07 -0.67 048 -0.36 -0.43
b608' -1.15 132 050 044 -0.11 040 -023 278 -0.17 038 -0.71 022 -0.67 -0.66
b609' 233 233 068 071 -041 042 -034 379 -0.17 043 -1.05 0.18 -0.99 -0.94
b601" 022 -145 -034 -0.09 035 046 089 -043 023 073 -025 0.16 -034 -0.59
a613' 044 -436 -1.19 022 -093 038 524 -10.79 2.00 097 -1.08 -0.97 -0.89 8.18
a614' 2251 415 070 081 -0.76 074 -457 359 049 1.11 -391 343 -563 0.73
a604' 1.15 -0.50 -0.19 -030 -0.01 -0.59 -026 -2.51 -0.25 -0.68 0.87 -049 107 134
b605' 034 050 022 017 -0.04 0.04 -023 077 -022 0.12 -029 0.07 -020 -0.20
b606' 1.17 -0.41 -023 -036 0.10 -0.41 -0.12 -1.87 -023 -0.66 0.80 -024 0.82 0.88
b607' 1.82 -0.97 -043 -0.56 020 -0.47 -0.00 -2.49 022 -0.68 121 -034 120 151
a602" 1.11 522 076 -0.51 -0.51 -1.15 -233 022 -0.44 -251 1.15 -034 1.17 182
a603" 8.14 -6.53 -2.05 -0.15 240 132 233 -145 -436 4.15 -0.50 0.50 -0.41 -0.97
a610" 295 -091 -0.68 -1.13 1.14 050 0.68 -034 -1.19 0.70 -0.19 022 -0.23 -0.43
a611" 0.55 -121 -036 -024 042 044 071 -009 022 081 -030 0.17 -0.36 -0.56
a612" | -0.69 129 0.51 057 -029 -0.11 -041 035 -093 -0.76 -0.01 -0.04 0.10 0.20
b608" 0.08 -0.54 054 270 -0.61 040 042 046 038 0.74 -0.59 0.04 -0.41 -0.47
b609" | -10.66 023 225 4.63 -3.19 -023 -034 089 524 -457 -026 -023 -0.12 -0.00
b601 %4 -589 -595 P49 9.13 278 3.79 -043 -10.79 3.59 -2.51 0.77 -1.87 -2.49
a613" | -120 -048 0.07 045 -0.66 -0.17 -0.17 023 200 049 -025 -022 -023 022
a614" | -0.86 -0.91 -0.01 029 -0.07 038 043 073 097 1.11 -0.68 0.12 -0.66 -0.68
a604" | 090 256 0.54 027 -0.67 -0.71 -1.05 -025 -1.08 -3.91 0.87 -029 0.80 121
b605" 0.66 026 0.06 -032 048 022 0.18 0.16 -097 343 -049 0.07 -024 -0.34
b606" | -0.82 2.80 025 -0.78 -0.36 -0.67 -0.99 -0.34 -0.89 -5.63 1.07 -020 0.82 120
b607" 0.53 3.18 -020 -0.85 -043 -0.66 -0.94 -059 818 0.73 134 -020 0.88 151




Table S2. The site energies o; (cm™") corresponding to purely electronic transitions, i.e. not including a
reorganization energy shift.

Site energies
a602 15097
a603 15227
a610 15013
a6l 15055
a612 15037
b608 15628
b609 15586
b601' 15754
a613 15115
a6l4 15204
a604 15400
b605 15544
b606 15716
b607 15577

The data from Tables S1 and S2 is enough to build the one-exciton Hamiltonian (S1). Switching to the
exciton representation (by diagonalization of (S1)) gives us the exciton energies energies wy and the
wavefunctions ¢;* allowing a calculation of the Redfield relaxation rates (S3), (S5) or (S9). The Redfield-
Forster approach implies diagonalization of Hamiltonian and calculation of the Redfield relaxation tensor for
each compartment. The transfers between compartments are given by generalized Forster rates (given by
(S5) and (S8)). The HEOM kinetics (S12) are calculated in the site representation. In our modeling both the
Redfield and HEOM kinetics are calculated using the electron-phonon spectral density (S11) with A4;=300
cm! and ;=500 cm™'. (where the A; and y; values are supposed to be the same for all the sites). The kinetics
are calculated for room temperature (T=293K). Notice that the site energies in Table S2 are different from
the original energy set obtained in ref. 16. The original energies emerged from the Redfield modeling with
realistic spectral density, whereas in the present study we use a simplified spectral density (S11) enabling us
to use the HEOM equation (S12). This spectral density gives a reduced reorganization shift that can be
compensated by some uniform shifting of the site energies (as explained in ref. 26). In Table S2 we show the
thus adjusted (shifted) site energies.

The calculation steps for the Redfield approach include:
(i) building of one-exciton Hamiltonian (S1);
(i1) diagonalization of Hamiltonian;
(iii) calculation of relaxation tensor (S3, S5, or S9);
(iv) solving of the Redfield equation (S2).

The calculation steps for the Redfield-Forster approach include:
(i) diagonalization of Hamiltonian and calculation of relaxation tensor for each compartment;
(ii) calculation of generalized Forster rates for the transfers between compartments;
(ii1) solving of equation (S2), where the k-th and p-th states may belong to the same or to different
compartments (transfers between compartments are incoherent (i.e. piw= Oy and p,,= d,y) With the
Ryipp €lements corresponding to the p—k generalized Forster rates).

The calculation steps for the HEOM approach include:
(i) building of one-exciton Hamiltonian (S1);
(i1) solving of hierarchical equation (S13) in the site representation .
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