Multiple Strategies of Improving Photocatalytic Water Splitting Efficiency in 2D Arsenic Sesquichalcogenides

Xiaoteng Li¹*, Chuanlu Yang¹*, Yuliang Liu¹, Endao Han², Wenkai Zhao¹, Xinxin Jiang³, Dongqing Zou¹, Yuqing Xu¹

Carrier Mobility

The carrier mobility at room temperature is obtained based on deformation potential (DP) approach, the formula as follows:

$$
\mu_{2D} = \frac{2e\hbar^3 C}{3K_B T|m^*|^2 E_d^2}
$$

(S1)

$$
C = \frac{(\partial^2 E/\partial \epsilon^2)/S_0} is the elastic modulus, where E is the whole energy and S₀ is the area of monolayers. \(E_d\) denotes the deformation potential constant, defined as

$$
E_d = \partial E_{edge}/\partial \epsilon
$$

Effective mass \((m^*)\) is determined as

$$
m^* = \pm \frac{\hbar^2\left(\frac{d^2E_k}{dk^2}\right)^{-1}}{4}
$$

Table S1 Effective carrier masses \((m^*)\), deformation potential constants \((E_d)\), elastic moduli \((C)\), and carrier mobility \((\mu)\) of \(\text{As}_2\text{X}_3\) monolayers.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Carrier Type</th>
<th>(m^*/m_0)</th>
<th>(C) (N/m)</th>
<th>(E_d) (eV)</th>
<th>(\mu) (cm²V⁻¹s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{As}_2\text{O}_3)</td>
<td>Electrons (x)</td>
<td>0.92</td>
<td>26.95</td>
<td>3.80</td>
<td>0.31 × 10²</td>
</tr>
<tr>
<td></td>
<td>Hole (x)</td>
<td>0.91</td>
<td></td>
<td>2.96</td>
<td>0.53 × 10²</td>
</tr>
<tr>
<td></td>
<td>Electrons (y)</td>
<td>0.84</td>
<td>50.98</td>
<td>2.2</td>
<td>0.21 × 10³</td>
</tr>
<tr>
<td></td>
<td>Hole (y)</td>
<td>0.79</td>
<td></td>
<td>4.2</td>
<td>0.66 × 10²</td>
</tr>
<tr>
<td>(\text{As}_2\text{S}_3)</td>
<td>Electrons (x)</td>
<td>0.52</td>
<td>40.74</td>
<td>2.53</td>
<td>0.33 × 10³</td>
</tr>
<tr>
<td></td>
<td>Hole (x)</td>
<td>0.49</td>
<td></td>
<td>3.69</td>
<td>0.18 × 10³</td>
</tr>
<tr>
<td></td>
<td>Electrons (y)</td>
<td>0.58</td>
<td>13.11</td>
<td>1.85</td>
<td>0.16 × 10³</td>
</tr>
<tr>
<td></td>
<td>Hole (y)</td>
<td>0.49</td>
<td></td>
<td>3.87</td>
<td>0.25 × 10²</td>
</tr>
<tr>
<td>(\text{As}_2\text{Se}_3)</td>
<td>Electrons (x)</td>
<td>0.47</td>
<td>52.6</td>
<td>1.82</td>
<td>1.01 × 10³</td>
</tr>
<tr>
<td></td>
<td>Hole (x)</td>
<td>0.43</td>
<td></td>
<td>3.42</td>
<td>0.35 × 10³</td>
</tr>
<tr>
<td></td>
<td>Electrons (y)</td>
<td>0.51</td>
<td></td>
<td>0.99</td>
<td>0.57 × 10³</td>
</tr>
</tbody>
</table>

¹ College of physics and optoelectronic engineering, Ludong University, Yantai 264000, People’s Republic of China
² School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
³ School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
<table>
<thead>
<tr>
<th></th>
<th>Hole (y)</th>
<th>Electrons (x)</th>
<th>Hole (x)</th>
<th>Electrons (y)</th>
<th>Hole (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As₂Te₃</td>
<td>0.25</td>
<td>0.12</td>
<td>0.18</td>
<td>0.09</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>3.79</td>
<td>65.09</td>
<td>2.02</td>
<td>10.11</td>
<td>5.46</td>
</tr>
<tr>
<td></td>
<td>0.16 × 10³</td>
<td>1.58 × 10⁴</td>
<td>7.46 × 10³</td>
<td>1.13 × 10³</td>
<td>0.96 × 10³</td>
</tr>
</tbody>
</table>

Figure S1 The calculated total and atom projected DOS of As₂S₃. The Fermi energy is set to zero.

Figure S2 The crystal structures of N-doped, P-doped, and P-Se-codoped As₂S₃ monolayers.

Figure S3 Phonon dispersion spectra of (a) N-doped, (b) P-doped and (c) P-Se codoped As₂S₃
monolayers. (d)-(f) The corresponding AIMD energy fluctuations at 300 K. The insets of (d)-(f) are the snapshots of equilibrium structure after 3ps.

Figure S4 The projected band structures of N-, P-, Se- and P-Se doped As$_2$S$_3$ monolayers.

Figure S5 Top and side views of the crystal structures for (a) As$_2$STe$_2$ and (b) As$_2$SeTe$_2$ monolayers.

Figure S6 Phonon dispersion spectra of (a) As$_2$STe$_2$ and (b) As$_2$SeTe$_2$ monolayers. (c)-(d) The corresponding AIMD energy fluctuations at 300 K. The insets of (c)-(d) are the snapshots of equilibrium structure after 3ps.
The Gibbs free energy

The free energy of the absorbed states is calculated according to the formula:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T \Delta S$$

(S2)

where ΔE is the adsorption energy, ΔE_{ZPE} and ΔS represent the variations of the zero-point energy and vibrational entropy between the adsorbed states and corresponding free-standing states, respectively. ΔE_{ZPE} is defined as:

$$E_{ZPE} = \frac{1}{2} \sum \nu$$

(S3)

where ν stands for the vibrational frequency. TS is defined as:

$$TS = k_b T \left[\sum_k \ln \left(\frac{1}{1 - e^{-\frac{\nu}{k_b T}}} \right) + \sum_k \frac{\nu}{k_b T} \left(\frac{1}{e^{\frac{-\nu}{k_b T}} - 1} + 1 \right) \right]$$

(S4)

Wherein, e, h and k_b represents the electron charge, Planck’s constant and Boltzmann’s constant. The value of T is 298.15K.

Here we take external potential and pH into account to evaluate the OER and HER activities. The HER process include two steps and the corresponding ΔG_{H^+} can be
expressed as:

1) $^* + \text{H}^+ + e^- \rightarrow \text{H}^*$ \hspace{1cm} (S5)

$$
\Delta G_1 = G_{^*} - \frac{1}{2}G_{\text{H}_2} - G_{^*} + \Delta G_U + \Delta G_{pH}
= \Delta E_{H} + \Delta E_{ZPE(U)} - T\Delta S_{H} + \Delta G_{U} + \Delta G_{pH}
= \Delta G_H
$$

(\text{S6})

While the OER contains four elementary steps and the ΔG can be derived as follows:

2) $\text{H}_2\text{O}(l) + ^* \rightarrow \text{OH}^* + \text{H}^+ + e^-$ \hspace{1cm} (S7)

$$
\Delta G_2 = G_{\text{OH}^*} - \frac{1}{2}G_{\text{H}_2} - G_{^*} - G_{\text{H}_2\text{O}} + \Delta G_U - \Delta G_{pH}
= \Delta E_{\text{OH}} + \Delta E_{ZPE(\text{OH})} - T\Delta S_{\text{OH}} + \Delta G_{U} - \Delta G_{pH}
= \Delta G_{\text{OH}}
$$

(\text{S8})

3) $\text{OH}^* \rightarrow \text{O}^* + \text{H}^+ + e^-$ \hspace{1cm} (S9)

$$
\Delta G_3 = G_{\text{O}^*} + \frac{1}{2}G_{\text{H}_2} - G_{\text{OH}^*} + \Delta G_U - \Delta G_{pH}
= (\Delta E_{O} + \Delta E_{ZPE(O)} - T\Delta S_{O} + 2\Delta G_{U} - 2\Delta G_{pH}) - (\Delta E_{\text{OH}} + \Delta E_{ZPE(\text{OH})})
= \Delta G_{\text{O}} - \Delta G_{\text{OH}}
$$

(\text{S10})

4) $\text{H}_2\text{O}(l) + \text{O}^* \rightarrow \text{OOH}^* + \text{H}^+ + e^-$ \hspace{1cm} (S11)

$$
\Delta G_4 = G_{\text{OOH}^*} + \frac{1}{2}G_{\text{H}_2} - G_{\text{O}^*} - G_{\text{H}_2\text{O}} + \Delta G_U - \Delta G_{pH}
= (\Delta E_{\text{OOH}} + \Delta E_{ZPE(\text{OOH})} - T\Delta S_{\text{OOH}} + 3\Delta G_{U} - 3\Delta G_{pH}) - (\Delta E_{O} + \Delta E_{ZPE(O)})
= \Delta G_{\text{OOH}} - \Delta G_{O}
$$

(\text{S12})

5) $\text{OOH}^* \rightarrow \text{O}_2(g) + \text{H}^+ + e^-$ \hspace{1cm} (S13)

$$
\Delta G_5 = G_{^*} + \frac{1}{2}G_{\text{H}_2} + G_{\text{O}_2} - G_{\text{OOH}^*} + \Delta G_U - \Delta G_{pH}
$$
\[
(4.92 + 4\Delta G_U - 4\Delta G_{pH}) - (\Delta E_{OOH} + \Delta E_{ZPE(OOH)} - T\Delta S_{OOH} + 3\Delta G_U -
\]

\[
= (4.92 + 4\Delta G_U - 4\Delta G_{pH}) - \Delta G_{OOH}
\]

(S14)

wherein, \(\Delta G_U = -eU \), denotes extra potential bias provided by an electron in the electrode, where \(U \) represents the potential difference from the standard hydrogen electrode potential. \(\Delta G_{pH} \) is the pH-dependent \(\Delta G \), and the corresponding formula is \(\Delta G_{pH} = k_b T \times \ln 10 \times \text{pH} \).

Solar-to-hydrogen (STH) efficiency

The efficiency of light absorption (\(\eta_{abs} \)) is defined as:

\[
\eta_{abs} = \frac{\int_{E_g}^{\infty} P(h\omega)d(h\omega)}{\int_0^\infty P(h\omega)d(h\omega)}
\]

(S17)

where \(E_g \) is the band gap of semiconductors and \(P(h\omega) \) is the AM1.5 solar energy flux at the photon energy \(h\omega \). The efficiency of carrier utilization (\(\eta_{cu} \)) is calculated by the formula:

\[
\eta_{cu} = \frac{\int_{E}^{\Delta G_{H_2O}} \int_{E_g}^{\infty} \frac{P(h\omega)}{h\omega} d(h\omega)}{\int_{E_g}^{\infty} P(h\omega)d(h\omega)}
\]

(S18)

where \(\Delta G_{H_2O} \) is the redox potential difference of H2O (1.23 eV) and \(E \) is the photons energy which can be fully used for water splitting. \(E \) can be defined as:
\[E = \begin{cases} E_g, & (\chi(H_2) \geq 0.2, \chi(O_2) \geq 0.6) \\ E_g + 0.2 - \chi(H_2), & (\chi(H_2) < 0.2, \chi(O_2) \geq 0.6) \\ E_g + 0.6 - \chi(O_2), & (\chi(H_2) \geq 0.2, \chi(O_2) < 0.6) \\ E_g + 0.8 - \chi(H_2) - \chi(O_2), & (\chi(H_2) < 0.2, \chi(O_2) < 0.6) \end{cases} \] (S19)

where \(\chi(H_2) \) and \(\chi(O_2) \) represent the overpotentials of HER and OER, respectively.

Then the STH efficiency is defined as:

\[\eta_{STH} = \eta_{abs} \times \eta_{cu} \] (S20)

When the photocatalysts possess internal electric filed, the STH efficiency will be corrected to:

\[\eta'_{STH} = \eta_{STH} \times \frac{\int_0^\infty P(h\omega)d(h\omega)}{\Delta\Phi \int_{E_g}^\infty \frac{P(h\omega)}{h\omega}d(h\omega) + \int_0^\infty P(h\omega)d(h\omega)} \] (S21)

where \(\Delta\Phi \) is the vacuum level difference between the two respective surfaces.

Table S2 The overpotentials for HER (\(\chi(H_2) \)) and OER (\(\chi(O_2) \)), the photons energy \((E) \), the efficiency of light absorption (\(\eta_{abs} \)) and carrier utilization (\(\eta_{cu} \)), and corrected STH (\(\eta'_{STH} \)).

<table>
<thead>
<tr>
<th>Materials</th>
<th>(\chi(H_2)) (eV)</th>
<th>(\chi(O_2)) (eV)</th>
<th>(E) (eV)</th>
<th>(\eta_{abs}) (%)</th>
<th>(\eta_{cu}) (%)</th>
<th>(\eta'_{STH}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As₂S₇e₂</td>
<td>0.33</td>
<td>0.51</td>
<td>1.10</td>
<td>84.67</td>
<td>64.21</td>
<td>36.19</td>
</tr>
<tr>
<td>As₂S₄e₂</td>
<td>0.19</td>
<td>0.13</td>
<td>1.45</td>
<td>87.19</td>
<td>43.61</td>
<td>29.36</td>
</tr>
</tbody>
</table>

References