# Multiple Strategies of Improving Photocatalytic Water Splitting

# Efficiency in 2D Arsenic Sesquichalcogenides

Xiaoteng Li<sup>1,\*</sup>, Chuanlu Yang<sup>1,\*</sup>, Yuliang Liu<sup>1</sup>, Endao Han<sup>2</sup>, Wenkai Zhao<sup>1</sup>, Xinxin Jiang<sup>3</sup>, Dongqing Zou<sup>1</sup>, Yuqing Xu<sup>1</sup>

### **Carrier Mobility**

The carrier mobility at room temperature is obtained based on deformation potential (DP) approach, the formula as follows<sup>1</sup>:

$$\mu_{2D} = \frac{2e\hbar^{3}C}{3K_{B}T|m^{*}|^{2}E_{d}^{2}}$$

### (S1)

 $C = (\partial^2 E / \partial \varepsilon^2) / S_0$  is the elastic modulus, where E is the whole energy and  $S_0$  is the area of monolayers.  $E_d$  denotes the deformation potential constant, defined as

$$E_d = \partial E_{edge} / \partial \varepsilon$$
. Effective mass (m\*) is determined as  $m^* = \pm \hbar^2 (\frac{d^2 E_k}{dk^2})^{-1}$ .

Table S1 Effective carrier masses ( $m^*$ ), deformation potential constants ( $E_d$ ), elastic moduli (C), and carrier mobility ( $\mu$ ) of As<sub>2</sub>X<sub>3</sub> monolayers.

| Materials                       | Carrier Type  | $m^{*}/m_{0}$ | <i>C</i> (N/m) | $E_{\rm d}({\rm eV})$ | $\mu$ (cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) |
|---------------------------------|---------------|---------------|----------------|-----------------------|----------------------------------------------------------|
| $As_2O_3$                       | Electrons (x) | 0.92          | 26.05          | 3.80                  | $0.31 \times 10^{2}$                                     |
|                                 | Hole (x)      | 0.91          | 20.95          | 2.96                  | $0.53 \times 10^{2}$                                     |
|                                 | Electrons (y) | 0.84          | 50.08          | 2.2                   | $0.21 \times 10^{3}$                                     |
|                                 | Hole (y)      | 0.79          | 50.98          | 4.2                   | $0.66 \times 10^{2}$                                     |
| $As_2S_3$                       | Electrons (x) | 0.52          | 40.74          | 2.53                  | $0.33 \times 10^{3}$                                     |
|                                 | Hole (x)      | 0.49          | 40.74          | 3.69                  | $0.18 \times 10^{3}$                                     |
|                                 | Electrons (y) | 0.58          | 12 11          | 1.85                  | $0.16 \times 10^{3}$                                     |
|                                 | Hole (y)      | 0.49          | 13.11          | 3.87                  | $0.25 \times 10^{2}$                                     |
| As <sub>2</sub> Se <sub>3</sub> | Electrons (x) | 0.47          | 52.6           | 1.82                  | $1.01 \times 10^{3}$                                     |
|                                 | Hole (x)      | 0.43          | 52.0           | 3.42                  | $0.35 \times 10^{3}$                                     |
|                                 | Electrons (y) | 0.51          | 10.20          | 0.99                  | $0.57 \times 10^{3}$                                     |

<sup>&</sup>lt;sup>1</sup> College of physics and optoelectronic engineering, Ludong University, Yantai 264000, People's Republic of China

<sup>3</sup> School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

<sup>&</sup>lt;sup>2</sup> School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

|                                 | Hole (y)      | 0.25             |       | 3.79  | $0.16 \times 10^{3}$ |
|---------------------------------|---------------|------------------|-------|-------|----------------------|
| As <sub>2</sub> Te <sub>3</sub> | Electrons (x) | 0.12             | 65.00 | 2.02  | $1.58 	imes 10^4$    |
|                                 | Hole (x)      | 0.18             | 03.09 | 1.86  | $7.46 \times 10^{3}$ |
|                                 | Electrons (y) | s (y) 0.09 (5.49 |       | 10.11 | $1.13 \times 10^{3}$ |
|                                 | Hole (y)      | 0.18             | 03.48 | 5.46  | $0.96 \times 10^{3}$ |



Figure S1 The calculated total and atom projected DOS of As<sub>2</sub>S<sub>3</sub>. The Fermi energy is set to zero.



Figure S2 The crystal structures of N-doped, P-doped, and P-Se-codoped  $As_2S_3$  monolayers.



Figure S3 Phonon dispersion spectra of (a) N-doped, (b) P-doped and (c) P-Se codoped As<sub>2</sub>S<sub>3</sub>

monolayers. (d)-(f) The corresponding AIMD energy fluctuations at 300 K. The insets of (d)-(f) are the snapshots of equilibrium structure after 3ps.



Figure S4 The projected band structures of N-, P-, Se- and P-Se doped As<sub>2</sub>S<sub>3</sub> monolayers.



Figure S5 Top and side views of the crystal structures for (a)  $As_2STe_2$  and (b)  $As_2SeTe_2$  monolayers.



Figure S6 Phonon dispersion spectra of (a)  $As_2STe_2$  and (b)  $As_2SeTe_2$  monolayers. (c)-(d) The corresponding AIMD energy fluctuations at 300 K. The insets of (c)-(d) are the snapshots of equilibrium structure after 3ps.



Figure S7 The transfer charges of As<sub>2</sub>STe<sub>2</sub> (As<sub>2</sub>SeTe<sub>2</sub>) monolayers.

### The Gibbs free energy

The free energy of the absorbed states is calculated according to the formula<sup>2</sup>:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{S2}$$

where  $\Delta E$  is the adsorption energy,  $\Delta E_{ZPE}$  and  $\Delta S$  represent the variations of the zeropoint energy and vibrational entropy between the adsorbed states and corresponding free-standing states, respectively.  $\Delta E_{ZPE}$  is defined as:

$$E_{ZPE} = \frac{1}{2} \sum h\nu \tag{S3}$$

where  $\nu$  stands for the vibrational frequency. TS is defined as:

$$TS = k_b T \left[ \sum_{K} \ln \left( \frac{1}{1 - e^{-h\nu/k_b T}} \right) + \sum_{K} \frac{h\nu}{k_b T} \left( \frac{1}{e^{-h\nu/k_b T} - 1} + 1 \right) \right]$$
(S4)

Wherein, e, h and  $k_b$  represents the electron charge, Planck's constant and Boltzmann's constant. The value of T is 298.15K.

Here we take external potential and pH into account to evaluate the OER and HER activities. The HER process include two steps and the corresponding  $\Delta G_{H^*}$  can be

expressed as:

1) \* + H<sup>+</sup> + e<sup>-</sup> 
$$\rightarrow$$
 H<sup>\*</sup> (S5)  

$$\Delta G_1 = G_{H^*} - \frac{1}{2}G_{H_2} - G_* + \Delta G_U + \Delta G_{pH}$$

$$= \Delta E_H + \Delta E_{ZPE(H)} - T\Delta S_H + \Delta G_U + \Delta G_{pH}$$

$$= \Delta G_H$$
(S6)

While the OER contains four elementary steps and the  $\Delta G$  can be derived as follows:

2) 
$$H_{2}O(l) + * \rightarrow OH^{*} + H^{+} + e^{-}$$
(S7)  

$$\Delta G_{2} = G_{OH^{*}} + \frac{1}{2}G_{H_{2}} - G_{*} - G_{H_{2}O} + \Delta G_{U} - \Delta G_{pH}$$

$$= \Delta E_{OH} + \Delta E_{ZPE(OH)} - T\Delta S_{OH} + \Delta G_{U} - \Delta G_{pH}$$

$$= \Delta G_{OH}$$
(S8)

3) 
$$OH^* \to O^* + H^+ + e^-$$
 (S9)

$$\Delta G_3 = G_{O^*} + \frac{1}{2}G_{H_2} - G_{OH^*} + \Delta G_U - \Delta G_{pH}$$
  
=  $(\Delta E_O + \Delta E_{ZPE(O)} - T\Delta S_O + 2\Delta G_U - 2\Delta G_{pH}) - (\Delta E_{OH} + \Delta E_{ZPE(OH)} - \Delta G_U - \Delta G_{pH})$ 

$$=\Delta G_0 - \Delta G_{0H} \tag{S10}$$

4) 
$$H_{2}O(l) + O^{*} \rightarrow OOH^{*} + H^{+} + e^{-}$$
(S11)  

$$\Delta G_{4} = G_{OOH^{*}} + \frac{1}{2}G_{H_{2}} - G_{O^{*}} - G_{H_{2}O} + \Delta G_{U} - \Delta G_{pH}$$

$$= (\Delta E_{OOH} + \Delta E_{ZPE(OOH)} - T\Delta S_{OOH} + 3\Delta G_{U} - 3\Delta G_{pH}) - (\Delta E_{O} + \Delta S_{O} + 2\Delta G_{U} - 2\Delta G_{pH})$$

$$=\Delta G_{00H} - \Delta G_0 \tag{S12}$$

5) 
$$\operatorname{OOH}^* \to *+ \ O_2(g) + \operatorname{H}^+ + e^-$$
 (S13)  
$$\Delta G_5 = G_* + \frac{1}{2}G_{H_2} + G_{O_2} - G_{OOH^*} + \Delta G_U - \Delta G_{pH}$$

$$= (4.92 + 4\Delta G_U - 4\Delta G_{pH}) - (\Delta E_{OOH} + \Delta E_{ZPE(OOH)} - T\Delta S_{OOH} + 3\Delta G_U)$$

$$= (4.92 + 4\Delta G_U - 4\Delta G_{pH}) - \Delta G_{OOH}$$
(S14)

wherein,  $\Delta G_U = -eU$ , denotes extra potential bias provided by an electron in the electrode, where *U* represents the potential difference from the standard hydrogen electrode potential.  $\Delta G_{pH}$  is the pH-dependent  $\Delta G$ , and the corresponding formula is  $\Delta G_{pH} = k_b T \times ln10 \times _{pH}$ .

## Solar-to-hydrogen (STH) efficiency

The efficiency of light absorption ( $\eta_{abs}$ ) is defined as<sup>3</sup>:

$$\eta_{abs} = \frac{\int_{E_g}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$

(S17)

where  $E_g$  is the band gap of semiconductors and  $P(\hbar\omega)$  is the AM1.5 solar energy flux at the photon energy  $\hbar\omega$ . The efficiency of carrier utilization ( $\eta_{cu}$ ) is calculated by the formula:

$$\eta_{cu} = \frac{\Delta G_{H_2 O} \int_{E}^{\infty} \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega)}{\int_{E_g}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$
(S18)

where  ${}^{\Delta G_{H_2 0}}$  is the redox potential difference of H<sub>2</sub>O (1.23 eV) and *E* is the photons energy which can be fully used for water splitting. *E* can be defined as:

$$E = \begin{cases} E_g , \ (\chi(H_2) \ge 0.2, \chi(O_2) \ge 0.6) \\ E_g + 0.2 - \chi(H_2) , \ (\chi(H_2) < 0.2, \chi(O_2) \ge 0.6) \\ E_g + 0.6 - \chi(O_2) , \ (\chi(H_2) \ge 0.2, \chi(O_2) < 0.6) \\ E_g + 0.8 - \chi(H_2) - \chi(O_2) , \ (\chi(H_2) < 0.2, \chi(O_2) < 0.6) \end{cases}$$
(S19)

where  $\chi(H_2)$  and  $\chi(O_2)$  represent the overpotentials of HER and OER, respectively. Then the STH efficiency is defined as:

$$\eta_{STH} = \eta_{abs} \times \eta_{cu} \tag{S20}$$

When the photocatalysts possess internal electric filed, the STH efficiency will be corrected to:

$$\eta'_{STH} = \eta_{STH} \times \frac{\int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\Delta \Phi \int_{E_{g}}^{\infty} \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega) + \int_{0}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$

(S21)

where  $\Delta \Phi$  is the vacuum level difference between the two respective surfaces.

**Table S2** The overpotentials for HER ( $\chi$ (H<sub>2</sub>)) and OER ( $\chi$ (O<sub>2</sub>)), the photons energy (*E*), the efficiency of light absorption ( $\eta_{abs}$ ) and carrier utilization ( $\eta_{cu}$ ), and corrected STH ( $\eta'_{STH}$ ).

| Materials                         | $\chi(H_2)(eV)$ | $\chi(O_2)(eV)$ | E(eV) | $\eta_{ m abs}(\%)$ | $\eta_{ m cu}(\%)$ | $\eta'_{ m STH}(\%)$ |
|-----------------------------------|-----------------|-----------------|-------|---------------------|--------------------|----------------------|
| As <sub>2</sub> STe <sub>2</sub>  | 0.33            | 0.51            | 1.10  | 84.67               | 64.21              | 36.19                |
| As <sub>2</sub> SeTe <sub>2</sub> | 0.19            | 0.13            | 1.45  | 87.19               | 43.61              | 29.36                |

## References

- 1. J. Xi, M. Long, L. Tang, D. Wang and Z. Shuai, *Nanoscale*, 2012, 4, 4348-4369.
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, *Journal of Physical Chemistry B*, 2004, 108, 17886-17892.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard,
 R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J.
 A. Turner and H. N. Dinh, *Journal of Materials Research*, 2011, 25, 3-16.