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Electrochemical measurements

At room temperature, using electrochemical workstation 1.0 M potassium 

hydroxide solution (CHI 660E) and electrochemical performance of three electrode 

system test materials. The working electrode was fabricated by deposition of the 

catalyst on a glass carbon (GC) electrode with a diameter of 5.0 mm. The reference 

electrode and the counter electrode were Ag/AgCl electrode and Pt sheet electrode, 

respectively. Polarization curve is acquired from linear sweep voltammetry (LSV) 

under the sweep rate is 5 mV s-1. The Tafel diagram is obtained by plotting the LSV 

curve as the logarithm of standard potential and current density. The electrochemical 

double layer capacitance (Cdl) is performed by cyclic voltammetry (CV), and the 

potential scan rate is set at 100, 80, 60, 40 and 20 mV s-1. From 100 kHz to 1 Hz testing 

electrochemical impedance spectroscopy (EIS).

As for catalyst preparation, firstly, 4 mg of electrocatalyst and 30 μL of 5% nafion 

solution were ultrasonically dispersed in a mixture of 1 mL water and ethanol (3:1) for 

15 min to form a mixed ink. Then spread the mixture of 10 μL ink on the 5 mm diameter 

glass carbon electrode, and natural drying for use. Therefore, the loading capacity of 

the sample is 0.197 mg cm-2.

Density Functional Theory

DFT calculations:

In the framework of density functional theory of first principles calculations, were 

performed based on the Cambridge Sequential Total Energy Package (CASTEP)1. The 

electron-electron interaction was described by exchange correlation functional under 



generalized gradient approximation (GGA) and Perdew–Burke–Ernzerhof (PBE) 

functional. A cut off energy of 650 eV was used and the convergence test of 4×4×1 K-

point sampling set is carried out. 0.01 eV for tolerance force, energy tolerance for each 

atom is 5.0 × 10-7 eV. Storage model of each atom can be in the absence of any 

constraint relaxation to the minimum enthalpy. Along the direction of the vacuum of 

space is set to 16 Å, which is sufficient to avoid interactions between two adjacent 

images. CoS, MoCoS and VCoS surface was established, and their surfaces absorbed 

O2, OH, O, OOH groups.

The Volmer reaction:

- * -
2H O+M+e M-H +OH

Through calculating every step of the reaction free energy to evaluate performance of OER 

(equation S1):

∆G = ∆E + ∆EZPE – T∆S – eU

where ∆E is the adsorption energy, ∆EZPE and ∆S are zero point energy (ZPE) change and 

entropy change (T = 300 K)2. U is under standard conditions for normal hydrogen electrode 

(NHE) measurement of potential, e is transferred charge for one-electron reactions. 

Four steps as adsorption free energy change of ∆Eads is shown below:

∆EOH* = EOH* – E* − (EH2O − 1/2 EH2)

∆EO* = EO* – E* − (EH2O − EH2)

∆EOOH* = EOOH* – E* − (2EH2O − 3/2 EH2)

Where E*, EOH*, EO* and EOOH* are the clean surface and three kinds of intermediates 

respectively adsorption on the surface of the total energy. EH2O, EH2, and EO2 are the computed 

energies for the individual H2O, H2 and O2 molecules, respectively.

In alkaline environment, anode OER the whole process can use the following four steps 



combination mechanism to describe formula (equation S2):

 - * -OH +* OH +e

* - * -
2OH + OH O +H O+e

* - * -OOH + OH OOH +e

* - -
2 2OOH + OH O +H O+e

Among them, * and M* represent the active site and the surface adsorption of 

intermediates.

The Gibbs free energy change for steps 1–4 can be expressed as follows:

1 OH

2 O OH

3 OOH O

4 OOH

ΔG =ΔG -eU
ΔG =ΔG -ΔG -eU
ΔG =ΔG -ΔG -eU
ΔG =4.92[eV]-ΔG -eU

Here, U is the potential measured on a normal hydrogen electrode under standard 

conditions. Theory of electric potential can be defined as equation S3:

OER 1 2 3 4η =max[ΔG ,ΔG ,ΔG ,ΔG ]/e-1.23[V]
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Figure S1. Calculated density of states (DOS) for CoS.
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Figure S2. Calculated density of states (DOS) for MoCoS. 
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Figure S3. Calculated density of states (DOS) for VCoS. 

0.0 0.2 0.4 0.6 0.8 1.0
-20

-15

-10

-5

0

5

10

15

20

En
er

gy
 (e

V)

Band energy

Figure S4. Calculated band structure of CoS.
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Figure S5. Calculated band structure of MoCoS.
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Figure S6. Calculated band structure of VCoS.
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Figure S7. Free energy diagrams of CoS for OER.

Figure S8. SEM images at different scales for MoCoS. 



Figure S9. The schematics of mechanism of the OER on CoS.

Figure S10. The schematics of mechanism of the OER on MoCoS.



Figure S11. TEM images and IFFT pattern of MoCoS. 

Supplementary Note1. For the work function, it was calculated according to the 

method reported by Liu et al.3.Through the excitation energy (hv=21.22 eV) subtracting 

He I UPS spectrum to estimate the width of ionization potential (the equivalent of 

valence band energy EVB)

Փ =hv-(Ecutoff–Efermi)



Supplementary Table 1. Comparison of the reported metal-based electrocatalysts on 

alkaline HER activity.

Catalyst Electrolyte Overpotential at 10 
mA cm geo-2 / mV

Reference

VCoS 1 M KOH 255 This work

Au@NiCo2S4 1 M KOH 299 4

Mn-doped-NiMoO4/NF 1 M KOH 237 5

N-MoS2/COF-C4N 1 M KOH 239 6

Ni0.5Co2.5O4 1 M KOH 363 7

M-Co3O4/NPC 1 M KOH 264 8

SSFF@ NiFe LDH 1 M KOH 198 9

PNGF 1 M KOH 278 10

LaNiO3 (LNO) 1 M KOH 288 11

PAN-N/3% Co 1 M KOH 460 12

Hf2B2Ir5 0.1 M H2SO4 287 13

InSnO2N 1 M KOH 450 14



Figure S12. Survey spectra of XPS for VCoS.

Figure S13 Survey spectra of XPS for MoCoS.
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Figure S14. Double layer VCoS CV curves under different scan rate.
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Figure S15. Double layer CoS CV curves under different scan rate.
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Figure S16. Double layer MoCoS CV curves under different scan rate.
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Figure S17. Double layer RuO2 CV curves under different scan rate.
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