Supporting Information: Intramolecular Hole—Transfer in Protonated Anthracene

Benjamin A. Laws,*,† Olha Krechkivska,† Klaas Nauta,† Scott H. Kable,†

and Timothy W. Schmidt^{†,‡}

†School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia ‡ARC Centre of Excellence in Exciton Science, Australia

E-mail: b.laws@unsw.edu.au

Contents

1	9H-An ⁺ Spectral Assignments	S-2
2	9D-An ⁺ Spectral Assignments	S-3
3	9D-An ⁺ Saddle-Point Surface	S-4
4	Transition Dipole Moment Derivatives	S-4
5	Calculated S ₁ Frequencies	S-5

1 9H-An⁺ Spectral Assignments

Spectral assignments for all prominent peaks resolved in the triple resonance photodissociation spectrum of the $S_1 \leftarrow S_0$ transition of 9H-An⁺ from this work are presented in Table S1. The position of each transition is given in cm⁻¹, with respect to the origin transition at 20,341 cm⁻¹.

Table S1: Assigned transitions from the triple-resonance spectrum of 9H-An⁺. Experimental peak positions are given in cm⁻¹, alongside the calculated positions from the paper. Energies are given with respect to the origin transition, at 20,341 cm⁻¹. Herzberg-Teller coupled and Fermi resonant transitions are indicated. ν_s represents transitions along the saddle point coordinate.

Transition	Simulation	Experiment	
00	0	0	
24^{1}	230	227	
23^{1}	248	238	Fermi Resonance
$47^{1}46^{1}$	335	329	
44^{1}	369	369	
46^{2}	398	393	Fermi Resonance
ν_s^1	444	443	HT
24^{2}	462	452	
23^{2}	478	463	
43^{1}	488	477	
67^{1}	556	548	HT
40^{1}	567	552	
22^{1}	598	595	
$23^{1}24^{1}$	599	597	
21^{1}	668	653	
$\nu_{s}^{1}24^{1}$	674	660	HT
24^{3}	703	701	
$67^{1}24^{1}$	790	787	HT
$22^{1}24^{1}$	846	832	
$21^{1}24^{1}$	902	882	
18^{1}	1019	1022	
$67^{1}24^{2}$	1026	1028	HT
ν_s^2	1039	1049	
55^{1}	1099	1105	HT
$21^{1}24^{2}$	1137	1114	
60^{1}	1203	1202	HT
$67^{1}24^{3}$	1259	1250	HT
$\nu_{s}^{2}24^{1}$	1269	1280	
12^{1}	1375	1376	

2 9D-An⁺ Spectral Assignments

Spectral assignments for all prominent peaks resolved in the triple resonance photodissociation spectrum of the $S_1 \leftarrow S_0$ transition of 9D-An⁺ from this work are presented in Table S2. The position of each transition is given in cm⁻¹, with respect to the origin transition at 20,358 cm⁻¹.

Table S2: Assigned transitions from the triple-resonance spectrum of 9D-An⁺. Experimental peak positions are given in cm⁻¹, alongside the calculated positions from the paper. Energies are given with respect to the origin transition, at 20,358 cm⁻¹. Herzberg-Teller coupled transitions are indicated. ν_s represents transitions along the saddle point coordinate.

Transition	Simulation	Experiment	
0^{0}	0	0	
46^{1}	222	220	
24^{1}	233	230	
23^{1}	379	368	
ν_s^1	439	441	HT
$45^{1}46^{1}$	458	451	
24^{2}	467	460	
67^{1}	556	555	HT
22^{1}	607	590	
$23^{1}24^{1}$	611	598	
21^{1}	665	653	
$\nu_{s}^{1}24^{1}$	672	680	HT
24^{3}	701	691	
$67^{1}24^{1}$	789	775	HT
$22^{1}24^{1}$	841	815	
$23^{1}24^{2}$	845	827	
$21^{1}24^{1}$	899	882	
$\nu_{s}^{1}24^{2}$	905	902	HT
24^{4}	934	913	
$67^{1}24^{2}$	1023	1020	HT
ν_s^2	1031	1020	
$22^{1}24^{2}$	1075	1069	
$23^{1}24^{3}$	1079	1072	
$21^{1}24^{2}$	1133	1115	
$67^{1}24^{3}$	1257	1248	HT
$\nu_{s}^{2}24^{1}$	1264	1250	
$22^{1}24^{3}$	1308	1303	

3 9D-An⁺ Saddle-Point Surface

To account for the imaginary frequency along the saddle-point coordinate ν_s , potential energy surfaces were generated at the M06-2X/cc-pVTZ level for the S₀ and S₁ states of 9D-An⁺. Surfaces along the saddle-point ν_s and prominent v_{24} coordinates are shown in Figure S1. Vibrational wavefunctions were calculated by numerically solving the time-independent Schrödinger equation, using a reduced mass of 5.9293 amu.

Figure S1: Calculated S₀ and S₁ potential energy surfaces of 9D-An⁺ along the saddle-point ν_s and prominent ν_{24} coordinates. Vibrational eigenstates were calculated by numerically solving the time-independent Schrödinger equation, using 200 basis functions and 1000 integration points.

4 Transition Dipole Moment Derivatives

The transition dipole moment was calculated at 21 points along each b_2 vibrational normal mode coordinate. The slope of the transition moment at the reference geometry was calculated for each

mode, to identify Herzberg-Teller coupled vibrations. Large slopes were calculated along modes ν_{55} , ν_{60} , and ν_{67} as shown in Figure S2.

Figure S2: Transition dipole moment calculated along the normal mode coordinate of active b_2 modes. At each point the dipole moment was calculated at the M06-2X/cc-pVTZ level.

5 Calculated S₁ Frequencies

The calculated harmonic frequencies for all 69 normal modes in 9H-An⁺ and 9D-An⁺ are presented in Table S3. All frequencies were calculated at the M06-2X/cc-pVTZ level. As the frequencies were calculated at the C_{2v} transition state geometry, there is one imaginary b_2 frequency along the saddle point coordinate.

Mode	Symmetry	9H-An ⁺	9D-An ⁺	Mode	Symmetry	9H-An ⁺	9D-An ⁺
1	a_1	3245	3245	35	b_1	2968	2968
2	a_1	3230	3230	36	b_1	1022	1022
3	a_1	3228	3214	37	b_1	999	999
4	a_1	3214	3204	38	b_1	923	921
5	a_1	3204	2965	39	b_1	870	870
6	a_1	2965	2383	40	b_1	781	766
7	a_1	1649	1649	41	b_1	730	643
8	a_1	1622	1621	42	b_1	571	561
9	a_1	1542	1540	43	b_1	488	460
10	a_1	1473	1473	44	b_1	369	380
11	a_1	1365	1365	45	b_1	280	265
12	a_1	1339	1337	46	b_1	199	222
13	a_1	1314	1314	47	b_1	59	59
14	a_1	1278	1269	48	b_2	3244	3244
15	a_1	1233	1233	49	b_2	3230	3230
16	a_1	1193	1193	50	b_2	3213	3213
17	a_1	1142	1141	51	b_2	3204	3204
18	a_1	1019	1069	52	b_2	1568	1562
19	a_1	895	888	53	b_2	1515	1497
20	a_1	756	750	54	b_2	1486	1483
21	a_1	668	665	55	b_2	1434	1416
22	a_1	598	607	56	b_2	1393	1392
23	a_1	378	379	57	b_2	1349	1343
24	a_1	230	233	58	b_2	1338	1336
25	a_2	1147	1147	59	b_2	1261	1237
26	a_2	1020	1020	60	b_2	1203	1010
27	a_2	989	989	61	b_2	1179	1179
28	a_2	903	903	62	b_2	1105	1105
29	a_2	760	760	63	b_2	1086	1092
30	a_2	668	668	64	b_2	917	883
31	a_2	473	473	65	b_2	867	850
32	a_2	417	417	66	b_2	810	779
33	a_2	221	221	67	b_2	556	556
34	a_2	106	106	68	b_2	387	383
				ν_s	b_2	444	439

Table S3: Calculated harmonic frequencies for the S₁ state of 9H-An⁺ and 9D-An⁺. All frequencies are listed in cm^{-1} and were calculated at the M06-2X/cc-pVTZ level.