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SUPPLEMENTARY NOTE 1: DERIVATION OF THE NON-ADIABATIC NON-ABELIAN BERRY
CONNECTION

For completeness we sketch here a derivation of the non-adiabatic non-Abelian propagator for a quasi-degenerate
manifold of energy eigenstates for a general quantum system. In the following, we assume the instantaneous Hilbert
space of the time-dependent Hamiltonian H(t) to be decomposable into a direct sum of quasi-degenerate manifolds
H = M0 ⊕ · · · ⊕MP of instantaneous eigenstates of H(t). The notion of quasi-degeneracy is here determined by the
rate of change of the instantaneous energies of H(t) versus their minimal spacings during the time evolution of the
quantum system.

Before proceeding, we recall the conditions for adiabatic time evolution which are crucial for the observation of the
Berry phase. We make the standard ansatz for the wavefunction |ψ(t)⟩

|ψ(t)⟩ =
∑
k

ck(t)e
− i

ℏ
∫ t
0
dt′ϵk(t

′) |ηk(t)⟩ (1)

in terms of the time dependent coefficients ck(t), instantaneous energies ϵk(t) and instantaneous eigenstates |ηk(t)⟩ (k
enumerates the entire collection of instantaneous eigenstates of H(t) at a given time t). The instantaneous energies
and eigenstates are assumed to be known and ck(t) are to be determined. Using this ansatz in the time-dependent
Schrödinger equation leads straightforwardly to the relation

ċl(t) + cl(t) ⟨ηl(t)|η̇l(t)⟩+
∑
k ̸=l

ck(t) ⟨ηl(t)|η̇k(t)⟩ = 0. (2)

Taking a time derivative of the instantaneous “time-independent” Schrödinger equation H(t) |ηk(t)⟩ = ϵk(t) |ηk(t)⟩
and multiplying on the left by ⟨ηl(t)| reveals that

⟨ηl(t)|η̇k(t)⟩ =
⟨ηl(t)| Ḣ(t) |ηk(t)⟩

ϵk(t)− ϵl(t)
(3)

for ϵl(t) ̸= ϵk(t) and so we have

ċl(t) + cl(t) ⟨ηl(t)|η̇l(t)⟩+
∑
k ̸=l

ck(t)
⟨ηl(t)| Ḣ(t) |ηk(t)⟩

ϵk(t)− ϵl(t)
= 0. (4)

If ϵl(t) ≈ ϵk(t) for some states during the time evolution of the system, the geometric terms ⟨ηl(t)|η̇k(t)⟩ must be
considered separately. These differential equations can be decoupled insofar as the matrix elements of the varia-
tion of the Hamiltonian between different eigenstates is much smaller than their energy splitting at all times i.e.∣∣∣⟨ηl(t)| Ḣ(t) |ηk(t)⟩

∣∣∣ << |ϵk(t)− ϵl(t)| ∀t. This is the condition for adiabatic evolution within a given quasi-degenerate

manifold. Thus for a Hamiltonian that varies linearly in time over an interval 0 ≤ t ≤ T , for time-evolution restricted

a kieran.hymas@csiro.au b alessandro.soncini@unipd.it

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2023



2

to one quasi-degenerate energy manifold of H(t) we should have that 1
T << ∆E(t) where ∆E(t) is the (possibly time

dependent) energy spacing to the other quasi-degenerate manifolds.
Now we consider a given manifold MK of instantaneous energy eigenstates |ηk(t)⟩ (where k indexes the states

within MK only) with associated instantaneous energies ϵk(t). If the system is initialised as some linear combination
of states from MK and the time evolution is not so fast as to trigger a dynamics with states from other manifolds
ML ̸=K (see above condition), then the wavefunction of the system can be expanded in eigenstates of MK only,
according to

|ψ(t)⟩ =
∑
k

ck(t) |ηk(t)⟩ . (5)

Importing this expression into the time-dependent Schrödinger equation and multiplying from the left with the bra
⟨ηl(t)| gives the system of coupled differential equations

ċl(t) =
−iϵl(t)

ℏ
cl(t)−

∑
k

⟨ηl(t)| η̇k(t)⟩ck(t) (6)

involving coefficients of eigenstates from MK only. Eq. (6) is solved formally by iteration to yield c1(t)
...

ck(t)

 = T e−
∫ t
t0

dt′[A(t′)+iΘ(t′)]

 c1(t0)
...

ck(t0)

 (7)

where we identify the unitary evolution operator projected onto the subspace MK from time t0 to t as

U(t; t0) = T e−
∫ t
t0

dt′[A(t′)+iΘ(t′)]. (8)

In Eq. (8), T is the time-ordering operator [1], A(t) is the Berry connection matrix with elements Aab(t) = ⟨ηa(t)| η̇b(t)⟩
and Θ(t) is the dynamical phase matrix with only non-zero diagonal elements Θab(t) = δabϵb(t)/ℏ.
Now, suppose that the time-dependence of H(t) is resultant from the variation of d classical parameters λ(t)

collected in the vector
(
λ1(t), . . . , λd(t)

)
such that the time-dependence of the Hamiltonian, instantaneous eigenstates

and energies of MK can be rewritten as H(λ(t)), |ηk(λ(t))⟩ and ϵk(λ(t)), respectively. An appropriate change of
variables in the integral of Eq. (8) yields

U = Pe−
∫
Γ

[
Aµ(λ)+iΘ(λ) dt′

dλµ

]
dλµ

(9)

where the time-ordering operator has been replaced with the path-ordering operator P and the line integral (with
Einstein summation convention implied over the repeated index µ) is over a particular path Γ traced out in parameter
space by the variation of λ. In addition, the Berry connection matrix has been redefined with matrix elements
Aµ,ab = ⟨ηa(λ)| ∂/∂λµ |ηb(λ)⟩ and the explicit time-dependence of the λ’s has everywhere been suppressed. Notably,
in performing this change of variables, we have assumed that the parameters λ(t′) are invertible everywhere along

the domain of integration Γ such that the derivatives dt′

dλµ are well-defined. For parameters which evolve linearly in
time according to λ(t) = u+ vt (for some time-independent d-dimensional vectors u and v), it is always possible to

construct such an inverse via t = v · (λ− u) /|v|2 provided that v is non-singular. In this case, the derivative in Eq.

9 is simply the inverse of the linear velocity of the variation,
(
dλµ

dt′

)−1
. Note that if a particular parameter λν does

not vary along Γ (i.e. dλν

dt′ = 0), it vanishes from the integral in Eq. (9) without pathology since the corresponding
infinitesimal line element dλν is also zero.

SUPPLEMENTARY NOTE 2: CALCULATION OF THE NON-ABELIAN BERRY CONNECTION
MATRIX ELEMENTS FROM A MACROSCOPIC ROTATION

Here we present the explicit calculation of the non-Abelian Berry connection matrix Aµdλ
µ presented in Eq. (4)

of the main text. These calculations have been reported previously in the literature [2, 3] for rotations about the α
and β Euler angles albeit with the third Euler angle γ set to zero.

For the ground doublet of a single-molecule magnet undergoing macroscopic rotations, the instantaneous eigen-
states of the rotating crystal field Hamiltonian H(α, β, γ) = R(α, β, γ)HSR†(α, β, γ) are simply |ηa(α, β, γ)⟩ =
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R(α, β, γ) |ϕa⟩ where HS |ϕa⟩ = ϵa |ϕa⟩ and R(α, β, γ) = exp(−iαSz) exp(−iβSy) exp(−iγSz) is the rotation oper-
ator defined in Eq. (1) of the main text. Thus, for variation of the α Euler angle, the non-Abelian Berry connection
matrix element between instantaneous eigenstates |ηa(α, β, γ)⟩ and |ηb(α, β, γ)⟩ is

Aα,ab = ⟨ϕa|R†(α, β, γ)
∂

∂α
R(α, β, γ) |ϕb⟩

= −i ⟨ϕa| eiγSzeiβSySze
−iγSze−iβSy |ϕb⟩ .

(10)

Repeated action of the identity eiωSiSje
−iωSi = Sj cosω − ϵijkSk sinω (where ϵijk is the Levi-Civita tensor) leads to

Aα,ab = i (⟨ϕa|Sx |ϕb⟩ sinβ cos γ − ⟨ϕa|Sy |ϕb⟩ sinβ sin γ − ⟨ϕa|Sz |ϕb⟩ cosβ) (11)

which in matrix form reads

Aα = i (Sx sinβ cos γ − Sy sinβ sin γ − Sz cosβ) . (12)

Similarly, for variation of the β angle we have

Aβ,ab = ⟨ϕa|R†(α, β, γ)
∂

∂β
R(α, β, γ) |ϕb⟩

= −i ⟨ϕa| eiγSzSye
−iγSz |ϕb⟩ .

(13)

where the dependence on α has vanished owing to eiαSze−iαSz = 1. Once again employing the identity eiωSiSje
−iωSi =

Sj cosω − ϵijkSk sinω leads to

Aβ,ab = −i (⟨ϕa|Sx |ϕb⟩ sin γ + ⟨ϕa|Sy |ϕb⟩ cos γ) (14)

which in matrix form reads

Aβ = −i (Sx sin γ + Sy cos γ) . (15)

Lastly, the matrix elements for variation of the γ Euler angle are

Aγ,ab = ⟨ϕa|R†(α, β, γ)
∂

∂γ
R(α, β, γ) |ϕb⟩

= −i ⟨ϕa|Sz |ϕb⟩ .
(16)

which is straightforwardly expressed in matrix form as

Aγ = −iSz. (17)

SUPPLEMENTARY NOTE 3: GEOMETRIC PROPAGATOR FOR ROTATION PATHS WITH VARYING
γ ANGLE

While we have considered rotation paths in the main text with fixed γ angles, so far we have neglected contributions
to the geometric propagator when γ is varied (i.e. dγ ̸= 0). Owing to the simple form of the γ component of the
non-Abelian gauge potential Aγ , the geometric propagator about a rotation path with dα = dβ = 0 and γ1 ≤ γ ≤ γ2
takes the form

Uγ = e
−

∫ γ2
γ1

Aγdγ = ei(γ2−γ1)Sz . (18)

For Kramers-type single-molecule magnets the Sz matrix has only non-zero diagonal elements and thus the propagator
in Eq. (18) is Abelian. In other words, macroscopic rotation of a Kramers-type SMM about the angle γ leads, at
best, to a phase acquisition of each of the ground doublet states but no population transfer. For a non-Kramers
type single-molecule magnet, the Sz matrix can have non-zero off-diagonal matrix elements and hence a population
transfer between quasi-degenerate ground doublet states could potentially be affected by macroscopic rotation (as
demonstrated in the main text for rotations about the α angle).
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SUPPLEMENTARY NOTE 4: EFFECT OF CRYSTAL FIELD SYMMETRY LOWERING AND
HYPERFINE COUPLING IN TbPc2

In our illustrative example of rotation-induced coherent dynamics in TbPc2, we assumed that the central Tb3+

ion of the magnet experienced a perfect D4d crystal field environment, resulting in the quasi-degenerate tunnel-split
ground doublet |ϕ±⟩ = (|mJ = −6⟩ ± |mJ = 6⟩) /

√
2. To account for lowering of this symmetry, we considered a

quadrupolar crystal field contribution A2
2⟨r2⟩O2

2(J) but found little modification to the TbPc2 ground doublet states
unless A2

2⟨r2⟩ >> A0
2⟨r2⟩. A recent multi-reference ab initio investigation [4] into several experimentally derived

TbPc2 crystal structures highlighted that symmetry lowering from ligand and/or counter ion modification, led to
small asymmetries ≲ 7% in the composition of the quasi-degenerate ground tunnelling states (see Tables S11-S16 of
Ref. [4]).

To explore the effect of this asymmetry on the geometric phase accumulated within the ground doublet of TbPc2,
we consider the generalised tunnelling states |ϕ+⟩ = cos κ

2 |mJ = −6⟩+sin κ
2 |mJ = 6⟩ and |ϕ−⟩ = − sin κ

2 |mJ = −6⟩+
cos κ

2 |mJ = 6⟩ as the ground doublet eigenstates of the TbPc2 crystal field Hamiltonian which are separated in energy
by ∆. Clearly, the Sx and Sy matrices are still zero in this basis, however the Sz matrix is modified from the main
text according to

Sz = J

(
cosκ sinκ
sinκ − cosκ

)
(19)

thus leading to the non-adiabatic propagator about a circular path on the unit sphere

Unon-ad
circle = e

−iT∆
2ℏ

 cos ζ̃
2ℏ + i(T∆+4πℏJ cos β cosκ)

ζ̃
sin ζ̃

2ℏ
4πiℏJ sinκ

ζ̃
cosβ sin ζ̃

2ℏ
4πiℏJ sinκ

ζ̃
cosβ sin ζ̃

2ℏ cos ζ̃
2ℏ − i(T∆+4πℏJ cos β cosκ)

ζ̃
sin ζ̃

2ℏ

 (20)

where now ζ̃ = ℏ
√
8π2J2(1 + cos 2β) + (T∆/ℏ)2 + 8πJT∆cosβ cosκ/ℏ.

Following the same line of argument as in the main text, a Hadamard gate is implemented in this system if the first
diagonal and off-diagonal matrix elements of Eq. (20) are equated leading to the conditions T = (4πℏJ cosβ/∆)(sinκ−
cosκ) and ζ̃/ℏ =

√
8π2J2(1 + cos 2β) + (T∆/ℏ)2 + 8πJT∆cosβ cosκ/ℏ = (2n+ 1)π. Simultaneous solution of these

relations results in the polynomial

cos2 β +
cosκ

1− sinκ cosκ
cosβ − (2n+ 1)2

32J2 (1− sinκ cosκ)
= 0 (21)

for cosβ. This equation has solutions

cosβ =
− cosκ± 1

2

√
cos2 κ+ (2n+1)2

8J2 (1− sinκ cosκ)

1− sinκ cosκ
. (22)

We take the positive root for cosβ to coincide with the κ = π/2 result derived in the main text. Deviating from the
symmetric tunnelling limit (κ = π/2) thus clearly requires the modulation of the canting angle and rotation time to
implement a Hadamard gate via macroscopic rotation of TbPc2. For the small deviations from a perfect symmetric
tunnelling ground states in TbPc2 that have been exposed by Pederson et al. [4], on the grounds of Eq. (22), we
estimate a worst case (κ = π

2 ± π
25 ) correction to the canting angle of ±8◦ and rotation time ±40 µs when n = 10.

In addition we have neglected the effect of hyperfine coupling to the I = 3/2 nuclear spin of 159Tb as well as
quadrupolar splitting of the |mI⟩ nuclear spin states due to a non-zero electric field gradient at the terbium nucleus.
Both of these effects can be accounted for in our model by augmenting Eq. (16) with the terms [5]

HTbPc2−nuc = aJzIz + P

(
I2z − 1

3
I (I + 1)

)
(23)

where the hyperfine coupling parameter a = 0.0173 cm−1 and the nuclear quadrupolar splitting P = 0.01 cm−1 have
been reported previously by Ishikawa et al [6]. Hyperfine coupling between the non-Kramers Tb3+ electronic spin
and Kramers-type nuclear spin leads to a zero-field ground state doublet comprised (to a good approximation) of the
|mJ = ±6⟩ ⊗ |mI = ∓3/2⟩ product states. The geometric propagator derived in Eq. (12) is ineffective at coupling
these two states since Sx = Sy = 0 and Sz = (J − I)σz resulting in, at most, each state accumulating a U(1) phase
after rotation. The effect described in the main text can however be recovered by the application of a magnetic
field Bz = amI

µBgJ
parallel to the TbPc2 easy axis which also rotates simultaneously with the SMM. Such a set-up
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has already been suggested for the observation of non-Abelian spin dynamics in NV centres [3] and Mn12 molecular

nanomagnets [7]. The application of this field recovers |ϕ±⟩⊗|mI⟩ = (|mJ = −6⟩±|mJ = 6⟩)/
√
2⊗|mI⟩ as an excited

quasi-degenerate doublet separated from the non-degenerate ground and first few excited states by less than 0.5 K (see
Figure 3a of [6]). Assuming a temperature which results in an unequal thermal population of these excited tunnelling
states, the non-Abelian coherent dynamics induced by a cyclic non-adiabatic rotation is once again observed between
the tunnelling ground states, as in the main text. Notably, the coherent dynamics of the non-degenerate ground and
first few excited states of TbPc2 in an applied field is unaffected by macroscopic rotations at speeds resonant with
the tunnel splitting ∆, hence their thermal population is inconsequential to the measurement of this effect.

SUPPLEMENTARY NOTE 5: SIMULATION OF ROTATION PATH FLUCTUATIONS

To simulate stochastic fluctuations in the canting angle β originating from instrument errors (e.g. rotor jitter) during
the macroscopic rotation of TbPc2 studied in the main text, we pseudo-randomly sample a normal distribution with
mean β ≈ 52◦ and standard deviation σ and build up a non-constant function of β as a function of time t. In Figure
1 below we show the typical fluctuations in the β canting angle during the rotation of TbPc2 about the circular path
outlined in the main text. For each standard deviation, we simulate 500 rotations of the TbPc2 magnet with fresh
β(t) canting angle fluctuations generated each time. We calculate the mean population and phase difference of the
tunnelling states of these 500 simulations and report them in Figure 7b in the main text.

FIG. 1. Typical fluctuations of the β canting angle from sampling a normal distribution about the mean value β = 51.78◦ for
several standard deviations σ.
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