Supporting Information

Cold Plasma Synthesis of Phosphorus-doped CoFe₂O₄ with Oxygen

Vacancies for Enhanced OER Activity

Dapeng Meng[†],^[a] Xiangfeng Peng[†],^[a] Jingxuan Zheng,^[a] Zhao Wang^{*[a]}

^a National Engineering Research Center of Industry Crystallization Technology, School

of Chemical Engineering and Technology, Tianjin University

[†] These authors contributed equally to this work.

* Corresponding author

E-mail: wangzhao@tju.edu.cn

Fig. S1 SEM images of samples (a) $CoFe_2O_4$, (b) $CoFe_2O_4$ -V_O

Fig. S2 TEM and SEM images of the samples. (a, b)CoFe₂O₄, (c, d)CoFe₂O₄-V₀.

Fig. S3 N₂-adsorption/desorption isotherms of (a) $CoFe_2O_4$, (b) $CoFe_2O_4$ -V₀ and (c) $CoFe_2O_4$ -P.

Fig. S4 Pore size distributions of (a) $CoFe_2O_4$, (b) $CoFe_2O_4$ -V_O and (c) $CoFe_2O_4$ -P.

Fig. S5 XPS spectra of samples

Fig. S6 Top view and bond length of $CoFe_2O_4$ -P. (a) undoped, (b) Fe(Td), (c) O1 and (d) O2

ruble S1. Doping energy of phosphorus at anterent sites								
site	Co(Oh)	Fe(Oh)	Fe(Td)	01	02			
Doping energy (eV)	-0.621	-0.592	0.281	5.295	4.321			

Table S1. Doping energy of phosphorus at different sites

Catalyst	η at 10 mA cm $^{-2}$	Tafel slope	Electrolete	Ref
	(mV)	(mV dec ⁻¹)	Electrolyte	
CoFe ₂ O ₄ -P	180	65.8	1.0 M KOH	This work
CaCo ₂ O ₄	371	71	0.1 M KOH	1
CoFe ₂ O ₄	410	64	1 M NaOH	2
NiFe ₂ O ₄	450	80	1.0 M NaOH	2
MnCo ₂ O ₄	400	90	0.1 M KOH	3
MnCo ₂ O ₄	>500	103.7	0.1 M KOH	4
MgCo ₂ O ₄	283	66	1.0 M KOH	5
MnCo ₂ O ₄ /CeO ₂	276	87	1.0 M KOH	6
$Fe_{0.2}Ni_{0.8}Co_2O_4$	270	39	1.0 M KOH	7
NiS/NiFe ₂ O ₄	230	88	1.0 M KOH	8
NiCo ₂ -xFe _x O ₄	274	42	1.0 M KOH	9
MoS ₂ /rFe-NiCo ₂ O ₄	270	39	1.0 M NaOH	10
MnFe ₂ O ₄ /NF	310	65	1.0 M KOH	11
CFO-B-MS	208	63	1.0 M KOH	12

Table S2 Summary of reported OER Activity for the recent catalysts.

Catalyst	Co/wt%	Fe/wt%	O/wt%	P/wt%
CoFe ₂ O ₄ -P	39.47	19.02	18.25	23.27

Table S3 The ICP results of $CoFe_2O_4$ -P.

References

- X. Lin, J. Zhou, D. Zheng, C. Guan, G. Xiao, N. Chen, Q. Liu, H. Bao, J.-Q. Wang, J. Energy. Chem. 2019, 31, 125–131.
- 2 C. Mahala, M. D. Sharma, M. Basu, *Electrochimica Acta* **2018**, *273*, 462–473.
- 3 W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.-P. Honkanen, S. Huotari, M. Yu, B. Geng, *Angew. Chem. Int. Ed.* **2017**, *56*, 14977–14981.
- 4 M. Harada, F. Kotegawa, M. Kuwa, ACS Appl. Energy Mater. 2022, 5, 278–294.
- 5 M. Ya, J. Wang, G. Li, G. Gao, X. Zhao, J. Cui, H. Wu, L. Li, ACS Sustainable Chem. Eng. 2023, 11, 744–750.
- 6 C. Fan, X. Wu, M. Li, X. Wang, Y. Zhu, G. Fu, T. Ma, Y. Tang, *Chem. Eng. J.* **2022**, *431*, 133829.
- 7 Y. Li, X. Lin, J. Du, *Inorg. Chem.* **2021**, *60*, 19373–19380.
- 8 Z. Shao, Q. Zhu, Y. Sun, Y. Zhang, Y. Jiang, S. Deng, W. Zhang, K. Huang, S. Feng, *Adv. Mater.* **2022**, *34*, 2110172.
- 9 Y. Huang, S. L. Zhang, X. F. Lu, Z. Wu, D. Luan, X. W. (David) Lou, *Angew. Chem. Int. Ed.* **2021**, *60*, 11841–11846.
- 10 J. Li, D. Chu, H. Dong, D. R. Baker, R. Jiang, J. Am. Chem. Soc. 2020, 142, 50–54.
- J. Kim, J. Lee, C. Liu, S. Pandey, S. Woo Joo, N. Son, M. Kang, *Appl. Surf. Sci.* 2021, 546, 149124.
- 12 J. Xie, J. Li, L. Kang, J. Li, Z. Wei, F. Lei, P. Hao, B. Tang, *ACS Sustainable Chem.* Eng. 2021, 9, 14596–14604.