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Sec. A.  Optical deformation potential vs. gauge field 

The (zeroth order) optical deformation potential is defined as the linear response of the on-site 

energy to the atomic displacement.1 Considering the effect of the optical deformation potential in 

general, Eq. (34) needs to be modified as  

Δ𝑯𝑯𝐤𝐤(𝐪𝐪,𝜂𝜂) = � 𝐷𝐷 𝑆𝑆𝜂𝜂
c. c. 𝐷𝐷

�
𝜖𝜖

�ℏ 2𝑀𝑀cell𝜔𝜔𝐪𝐪⁄
, �S1� 

where 𝐷𝐷 ∝ 𝜕𝜕𝑒𝑒on
𝜕𝜕𝜕𝜕

 denotes optical deformation potential. Under the perturbation of an optical phonon 

mode, the Dirac point’s energy will be lifted by 𝐷𝐷𝜖𝜖 �ℏ 2𝑀𝑀cell𝜔𝜔𝐪𝐪⁄⁄ . Using graphene as an example, 
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we vary the C-C bond length in the primitive cell and calculate the band dispersion near 𝐊𝐊 to obtain 

the energy shift of Dirac point, as shown in Fig. S1. 

 
Figure S1. Variation of Dirac point energy. The horizontal coordinate is the percentage change in bond length. 

The energies of the Dirac point at different atomic displacements have been subtracted from their respective 

vacuum energy levels, making the Δ𝐸𝐸dp comparison valid.  

The relationship between Dirac point energy change and bond length variation is in quadratic 

form, so the linear response of the 𝑒𝑒on is zero. This is different from the case of the acoustic phonon, 

where both the deformation potential and the gauge field respond linearly to the strain tensor.2 We 

further estimate the effect of the quadratic term, which is commonly referred to the coupling via 

the first-order interaction in deformation potential theory.3 The average of Δ𝑑𝑑  can be simply 

estimated from 𝜇𝜇𝜔𝜔2Δ𝑑𝑑2 = 𝑘𝑘𝐵𝐵𝑇𝑇/2, where 𝜇𝜇  is the effective mass 𝑀𝑀C/2. At 𝑇𝑇 = 300 K, Δ𝑑𝑑 =

0.016 Å, Δ𝑑𝑑 𝑑𝑑⁄ = 1%, Δ𝐸𝐸dp = 0.001~0.002 eV. Under the same Δ𝑑𝑑 , the change of hopping 
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integral becomes 𝐸𝐸ℎΔ𝑑𝑑 �ℏ 4𝑀𝑀C𝜔𝜔𝐪𝐪⁄⁄ = 0.22 eV ≫ Δ𝐸𝐸dp. Therefore, we prove that the effect of 

optical phonons on Δ𝑒𝑒on  is negligible. Note that for typical semiconductors the first-order 

deformation potential cannot be neglected, see Fig. S2. 

 

Figure S2. Schematic illustration of the effect of deformation potential and gauge field in (a) Dirac cones and 

(b) semiconductors. The blue and red lines represent the band structures before and after the atomic shift under 

optical phonon mode. The linear band dispersion of Dirac cone leads to the dominance of the gauge field.  

 

Sec. B.  Properties of VCl3 monolayer 

The density of states of VCl3 monolayer is shown in Fig. S3. The density of states of spin-up 

and spin-down electrons are different. Near the Fermi energy, only spin-up electron states occur, 

these electronic states are mainly contributed by 𝑑𝑑𝑥𝑥𝑥𝑥 and 𝑑𝑑𝑥𝑥2−𝑥𝑥2 orbitals of the V atom, with a 

small contribution from 𝑑𝑑𝑥𝑥𝑦𝑦 and 𝑑𝑑𝑥𝑥𝑦𝑦 orbitals, while spin-down electronic states present a huge 
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energy gap (Δ ≈ 6 eV). Only one spin channel contributes to the electron transport (𝑔𝑔 = 2 instead 

of 4 in graphene and α-graphyne).  

 
Figure S3. (a) total, (b) l-resolved (spin up) and (c) lm-resolved (spin up) DOS of VCl3 monolayer. The unit of 

DOS is states/eV.  

The parameters required to calculate the acoustic phonon limited mobility (Table 1) according 

to the generalized deformation potential theory proposed by Li et al.2 are shown in Fig. S4. The 

elastic constants 𝐶𝐶11 = 28.8 J ⋅ m−2,𝐶𝐶44 = 9.76 J ⋅ m−2 can be extracted directly from the phonon 

calculations. Li et al.4 showed that when the system has in-plane C3 symmetry, the pseudo-energy 

gap versus uniaxial/shear strain satisfies 𝜕𝜕𝐸𝐸gap
𝜕𝜕𝜕𝜕(armchair) = 𝜕𝜕𝐸𝐸gap

𝜕𝜕𝜕𝜕(zigzag) = 𝜕𝜕𝐸𝐸gap
𝜕𝜕𝜕𝜕

 under the tight-binding 

approximation. Our simulation results confirm this property. 
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Figure S4. (a) Fermi velocity, (b) deformation potential constant, deformation hopping constant under (c) 

uniaxial, and (d) shear strain of VCl3 monolayer.  

More computational details of optical phonon limited mobility of VCl3 monolayer are shown in 

Table S1. This corresponds to step 4 in the calculating process. 

Table S1. The raw data for the calculation of 𝐸𝐸ℎ,𝜂𝜂 in VCl3 monolayer.  

mode frequency at Γ 
(cm-1) degeneracy Epseudogap 

(𝜖𝜖 = 0.01 Å) 
Epseudogap 

(𝜖𝜖 = 0.1 Å)a 
Relative displacement 

of V atomsb 
𝐸𝐸ℎ,𝜂𝜂 

(meV) 
1 347.42 1 0.0000 0.0000 0 0 
2 294.28 2 0.0094 0.0948 0.96 𝐲𝐲� 17.7 
3 294.28 2 0.0094 0.0957 -0.96 𝐱𝐱� 17.7 
4 273.54 1 0.0000 0.0000 0.84 𝐳𝐳� 0 
5 273.50 2 0.0002 0.0062 0 1.2 
6 273.50 2 0.0002 0.0062 0 1.2 
7 273.18 1 0.0000 0.0001 0 0 
8c 259.10 1 0.0016 0.0151 0 ? 
9 215.90 2 0.0000 0.0076 0 0 
10 215.90 2 0.0000 0.0076 0 0 
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11 210.50 2 0.0030 0.0320 -0.10 𝐱𝐱� 7.4 
12 210.50 2 0.0030 0.0305 0.10 𝐲𝐲� 7.4 
13d 169.51 2 0.0001 0.0092 -1.02 𝐲𝐲� 0.2 
14d 169.51 2 0.0001 0.0128 -1.02 𝐱𝐱� 0.2 
15 145.39 2 0.0000 0.0054 0 0 
16 145.39 2 0.0000 0.0054 0 0 
17 144.68 1 0.0000 0.0000 1.03 𝐳𝐳� 0 
18 117.12 1 0.0000 0.0000 0 0 
19 95.18 1 0.0000 0.0000 0 0 
20 89.58 2 0.0007 0.0093 -0.15 𝐱𝐱� 3.0 
21 89.58 2 0.0007 0.0074 -0.15 𝐲𝐲� 3.0 
22 0.00  0.0000 0.0001 0  
23 0.00  0.0000 0.0000 0  
24 0.00  0.0000 0.0000 0  

a 𝜖𝜖 = 0.1 Å may be too large for calculating 𝐸𝐸ℎ,𝜂𝜂 . Some side effects may occur, like anharmonic effect, and the 
contribution of optical deformation potential. Normally at 𝑇𝑇 = 300 K, according to the same approach in sec. A, the 
average displacement 𝜖𝜖 = 0.01~0.03 Å, so we can safely adopt the pseudogap at 𝜖𝜖 = 0.01 Å and ignore the optical 
deformation potential like graphene. 
b The difference between the polarization vectors of the two V atoms in the unit cell. 
c This mode needs further consideration, because the group theory analysis and tight-binding approach5 do not predict 
an energy gap. (A real gap, not pseudogap) 
d These modes present relatively large displacement of V atoms, but 𝐸𝐸ℎ,𝜂𝜂 are very small.  

 

Sec. C.  More analyses of 𝝉𝝉(𝒌𝒌), 𝑭𝑭(𝝀𝝀) and 𝑭𝑭(𝝀𝝀,𝜷𝜷𝝁𝝁𝟎𝟎) 

In this section, we will analyze the relaxation time equation [Eq. (19)], the integral 𝐹𝐹(𝜆𝜆) [Eq. 

(26)] and 𝐹𝐹(𝜆𝜆,𝛽𝛽𝜇𝜇0) [Eq. (31)] in the main text in more detail and create an intuitive impression. 

According to Eq. (19), the relaxation time for electron scattering by optical phonons in Dirac 

materials is shown in Fig. S5(a). The “ghost-like” curve has three maximums located at 𝜖𝜖(𝑘𝑘) = 0 

and ±ℏ𝜔𝜔0, and the height of “hands” is about twice the height of the “head” in linear scale.  

We provide Table S2 to facilitate the calculation of 𝐹𝐹(𝜆𝜆) by using the interpolation method. 

Perhaps a faster way to estimate 𝐹𝐹(𝜆𝜆) is lg𝐹𝐹 ≈ 1.65 lg 𝜆𝜆 − 0.56𝜆𝜆 + 0.62𝜆𝜆 lg 𝜆𝜆. The maximum 

error for this approximation is about 15% [Fig. S5(b)]. For the case of charge doping, we 

investigate the effect of doping concentration on mobility. The doping concentration determines 

chemical potential by 𝑛𝑛 = 𝑔𝑔
2𝜋𝜋(𝛽𝛽ℏ𝑣𝑣F)2 �−Li2�−e𝛽𝛽𝜇𝜇0��. According to [Eq. (30)], for a given optical 
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phonon branch, the mobility is proportional to −𝐹𝐹(𝜆𝜆,𝛽𝛽𝜇𝜇0)/Li2�−e𝛽𝛽𝜇𝜇0�. Fig. S6(a) illustrates the 

relationship of carrier mobility and chemical potential on graphene. The carrier mobility caused 

by optical phonons first slightly rises and then decreases. Fig. S6(b) plots the − 𝐹𝐹(𝜆𝜆,𝛽𝛽𝜇𝜇0)
Li2�−e𝛽𝛽𝜇𝜇0�

~𝛽𝛽𝜇𝜇0 

curve under various 𝜆𝜆 and Fig. S6(c) shows the mobility with charge doping compared to the 

neutrality point. Numerical calculations indicate that when 𝜆𝜆 is small (≤ 2.7), the carrier mobility 

monotonically decreases with 𝛽𝛽𝜇𝜇0, and when 𝜆𝜆 is large (≥ 2.7), the carrier mobility rises slightly 

then decreases with 𝛽𝛽𝜇𝜇0. One can also show that only for 𝛽𝛽𝜇𝜇0 ≫ 𝜆𝜆, i.e. the chemical potential is 

much larger than phonon energy, 𝜇𝜇 ∝ 𝑛𝑛−1 holds (like acoustic phonon scattering). 

 

Figure S5.  (a) Relaxation time of electron by optical phonon scattering. (b) lg𝐹𝐹(𝜆𝜆)− 𝜆𝜆 relationship, and a 

fitting curve of lg𝐹𝐹(𝜆𝜆). 

Table S2  The relationship of lg𝐹𝐹(𝜆𝜆)− 𝜆𝜆. 

𝜆𝜆 lg𝐹𝐹(𝜆𝜆) 𝜆𝜆 lg𝐹𝐹(𝜆𝜆) 𝜆𝜆 lg𝐹𝐹(𝜆𝜆) 𝜆𝜆 lg𝐹𝐹(𝜆𝜆) 𝜆𝜆 lg𝐹𝐹(𝜆𝜆) 

0.1 -1.61179 2.1 -0.20636 4.1 0.29163 6.1 0.84549 8.1 1.54512 
0.2 -1.31833 2.2 -0.17641 4.2 0.31517 6.2 0.87795 8.2 1.58202 
0.3 -1.14780 2.3 -0.14732 4.3 0.33900 6.3 0.91077 8.3 1.61903 
0.4 -1.02655 2.4 -0.11906 4.4 0.36318 6.4 0.94394 8.4 1.65615 
0.5 -0.93160 2.5 -0.09155 4.5 0.38775 6.5 0.97743 8.5 1.69338 
0.6 -0.85279 2.6 -0.06476 4.6 0.41273 6.6 1.01122 8.6 1.73072 
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0.7 -0.78477 2.7 -0.03862 4.7 0.43816 6.7 1.04531 8.7 1.76815 
0.8 -0.72438 2.8 -0.01309 4.8 0.46406 6.8 1.07967 8.8 1.80568 
0.9 -0.66964 2.9 0.01190 4.9 0.49045 6.9 1.11428 8.9 1.84330 
1.0 -0.61924 3.0 0.03640 5.0 0.51734 7.0 1.14914 9.0 1.88100 
1.1 -0.57227 3.1 0.06047 5.1 0.54473 7.1 1.18423 9.1 1.91879 
1.2 -0.52808 3.2 0.08418 5.2 0.57264 7.2 1.21953 9.2 1.95666 
1.3 -0.48620 3.3 0.10758 5.3 0.60106 7.3 1.25503 9.3 1.99461 
1.4 -0.44630 3.4 0.13075 5.4 0.62997 7.4 1.29073 9.4 2.03263 
1.5 -0.40811 3.5 0.15374 5.5 0.65939 7.5 1.32660 9.5 2.07073 
1.6 -0.37143 3.6 0.17662 5.6 0.68929 7.6 1.36265 9.6 2.10890 
1.7 -0.33612 3.7 0.19946 5.7 0.71965 7.7 1.39885 9.7 2.14713 
1.8 -0.30204 3.8 0.22232 5.8 0.75047 7.8 1.43521 9.8 2.18543 
1.9 -0.26911 3.9 0.24526 5.9 0.78173 7.9 1.47171 9.9 2.22380 
2.0 -0.23724 4.0 0.26835 6.0 0.81341 8.0 1.50835 10 2.26223 

 

 

Figure S6.  Properties of 𝐹𝐹(𝜆𝜆,𝛽𝛽𝜇𝜇0). (a) reflects the variation of graphene mobility (optical phonon limited, 

dimensionless) with doping concentration. (b) reflects the variation of mobility (dimensionless) with doping 
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concentration under various optical phonon frequency. (c) The comparison of mobility between doped and 

undoped case. 
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