Supporting Information for

"Model calculations for the prediction of the diradical character of physisorbed molecules: p-Benzyne/MgO and p-Benzyne/SrO"

Kohei Tada,*^a Takashi Kawakami ^{b,c} and Yoyo Hinuma^a

a. Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1–8–31 Midorigaoka, Ikeda, Osaka 563–8577, Japan.

b. RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.

c. Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

Phone: +81-72-751-8566; Fax: +81-72-751-9714; Email: k-tada@aist.go.jp

Table of Contents

- Specific values of spin contamination errors: Tables S1 and S2 p. 2
- Local magnetic moments of benzyne with and without surface interactions: Tables S3 and S4

p. 2

- Local magnetic moments of atoms in the MgO and SrO models with benzyne adsorptions: Table S5 p. 3–4
- The results of plotting the y values against the interatomic distances, bond angles, and bond dihedral angles: Figures S1–S6
 p. 5–10
- The dependence of the diradical character on the distances when the optimised p-benzyne is systematically distorted: Figs. S7–S9 p.11–13
- The dependence of charge polarisation of Model D on the k-point sampling: Fig. S10

p. 14

Journal Name

Table S1. Spin contamination errors (SCEs) in the total energies of the calculated models.

Model	SCE [eV]		
Model A; Fig. 2(a)	0.198		
Model B; Fig. 2(b)	0.188		
Model C; Fig. 2(c)	0.181		
Model D; Fig. 2(d)	0.175		
Model E; Fig. 2(e)	0.179		
Model A'; Fig. 10(a,b)	0.199		
Model B'; Fig. 10(c,d)	0.192		
Model C'; Fig. 10(e,f)	0.184		
Model D'; Fig. 10(g,h)	0.072		
Model E'; Fig. 10(i,j)	0.147		
Benzyne; Fig. 4(a)	0.209		

Table S2. Edis values with (Edis, AP) and without (Edis, DFT) spin contamination error correction

Model	E _{dis, AP} [meV]	E _{dis, DFT} [meV]
Model A; Fig. 2(a)	2	1
Model B; Fig. 2(b)	5	9
Model C; Fig. 2(c)	-3	4
Model D; Fig. 2(d)	-1	4
Model E; Fig. 2(e)	-1	12

Table S3. Local magnetic moment (μ_B [e⁻]) of atoms in benzyne in models without surfaces

Atoms ^a	Model A	Model B	Model C	Model D	Model E
C1	0.037	0.035	0.036	0.036	0.035
C2	-0.035	-0.035	-0.036	-0.036	-0.035
С3	0.442	0.440	0.440	0.440	0.439
C4	-0.037	-0.035	-0.036	-0.036	-0.035
C5	0.036	0.035	0.036	0.036	0.035
C6	-0.442	-0.440	-0.440	-0.440	-0.439
H1	-0.008	-0.008	-0.008	-0.008	-0.008
H2	0.008	0.008	0.008	0.008	0.008
H3	0.008	0.008	0.008	0.008	0.008
H4	-0.008	-0.008	-0.008	-0.008	-0.008

^a Atom labelling is given in Fig. 4(a), and C3 and C6 atoms are main spin sites.

Table S4. Local magnetic moments (μ_B [e⁻]) of atoms in benzyne models with surfaces

Atoms ^a	Model A	Model B	Model C	Model D	Model E
C1	0.035	0.035	0.035	0.032	0.032
C2	-0.036	-0.027	-0.033	-0.032	-0.031
C3	0.437	0.425	0.416	0.387	0.406
C4	-0.035	-0.027	-0.034	-0.031	-0.032
C5	0.036	0.035	0.033	0.032	0.031
C6	-0.438	-0.405	-0.417	-0.415	-0.408
H1	-0.008	-0.005	-0.007	-0.007	-0.007
H2	0.007	0.009	0.007	0.007	0.007
H3	0.008	0.009	0.007	0.007	0.007
H4	-0.007	-0.005	-0.007	-0.007	-0.007

^a Atom labelling is given in Fig. 4(a), and C3 and C6 atoms are main spin sites

This journal is © The Royal Society of Chemistry 20xx

Table S5. Local magnetic moments (μ_B [e⁻]) of atoms in models of MgO or SrO with benzyne adsorptions

Atoms ^a	Model A	Model B	Model C	Model D	Model E
A1	0.000	0.000	0.000	0.002	0.000
A2	0.000	0.000	0.000	0.000	0.000
A3	0.000	0.000	0.000	0.000	0.000
A4	0.000	0.000	0.000	0.000	0.000
A5	0.000	0.000	0.000	0.000	0.000
A6	0.000	0.000	0.000	0.000	0.000
A7	0.000	0.000	0.000	0.000	0.000
A8	0.000	0.000	0.000	0.000	0.000
A9	0.000	0.000	0.000	0.000	0.000
A10	0.000	0.000	0.000	0.000	0.000
A11	0.000	0.000	0.001	0.000	0.000
A12	0.000	0.000	0.000	0.002	0.002
A13	0.000	0.000	0.000	0.000	0.000
A14	0.000	0.000	0.000	0.000	0.000
A15	0.000	0.000	-0.001	0.000	-0.002
A16	0.000	0.000	0.000	0.000	0.000
A17	0.000	0.000	0.000	0.009	0.000
A18	0.000	0.000	0.000	0.000	0.000
A19	0.000	0.000	0.000	0.000	0.000
A20	0.000	0.000	0.000	0.000	0.000
A21	0.000	0.000	0.000	0.000	0.000
A22	0.000	0.000	0.000	0.000	0.000
A23	0.000	0.000	0.000	0.000	0.000
A24	0.000	-0.003	0.000	0.000	0.000
A25	0.000	0,000	0.000	-0.003	0.000
A26	0.000	0.000	0.000	0.005	0.000
Δ27	0.000	0.001	0.014	0.001	0.000
Δ28	0.000	0.000	0.015	0.035	0.061
Δ29	0.000	0.000	0.000	0.001	-0.001
A30	0.000	0.001	-0.012	-0.003	0.001
A31	0.000	0.000	-0.015	0.000	-0.054
A32	0.000	0.000	0.000	0.001	0.00
01	0.000	0.000	0.000	0.000	0.000
02	0.000	0.000	0.000	0.000	0.000
03	0.000	0.000	0.000	0.000	0.000
04	0.000	0.000	0.000	0.000	0.000
05	0.000	0.000	0.000	0.000	0.000
06	0.000	0.000	0.000	0.000	0.000
07	0.000	0.000	0.000	0.000	0.000
08	0.000	0.000	0.000	0.000	0.000
09	0.000	0,000	0.000	0.000	0.000
010	0.000	0.000	0.000	0.000	0.000
011	0.000	0.000	0.000	0.000	0.000
012	0.000	0.000	0.000	0.000	0.000
012	0.000	0.000	0.000	0.000	0.000
013	0.000	0.000	0.000	0.000	0.000
015	0.000	0.000	0.000	0.000	0.000
016	0.000	0,000	0.000	0.000	0.000
017	0.000	0.000	0.000	0.000	0.000
018	0.000	-0 002	0.000	0.000	0.000
019	0.000	-0.002	0.000	0.000	0.000
020	0.000	0.002	0.000	0.000	0.000
020	0.000	-0.002	0.000	0.001	0.002
021	0.001	0.002	0.000	0.000	0.000
022	0.000	0.000	0.000	0.000	-0.002
023	0.000	-0.000	0.000	0.000	0.002
024	0.000	-0.002	0.000	0.000	0.000

Journal Name

O25	0.014	0.000	0.001	0.002	0.000
O26	0.000	0.001	0.000	0.000	0.001
027	-0.010	0.000	0.000	0.000	0.000
O28	0.000	0.000	-0.001	0.000	-0.001
O29	0.000	0.001	0.000	0.000	0.000
O30	0.000	0.000	0.000	0.000	0.000
031	0.000	0.001	0.000	0.000	0.000
032	0.000	-0.097	0.000	0.000	0.000

^a A1-A32 are Mg or Sr atoms, and O1-O64 are O atoms.

Figure S1. The plotted diradical character (y) against distances (a) d_{C1-C2} , (b) d_{C1-C3} , (c) d_{C1-C3} , (d) d_{C1-C5} , and (e) d_{C1-C6} , where d_{A-B} refers to the distance between atoms A and B, and indices for C atoms are shown in the main text (Fig. 4(a)).

Figure S2. The plotted diradical character (y) against distances (a) d_{C2-C3} , (b) d_{C2-C4} , (c) d_{C2-C5} , and (d) d_{C2-C6} , where d_{A-B} refers to the distance between atoms A and B, and indices for C atoms are shown in the main text (Fig. 4(a)).

Figure S3. The plotted diradical character (y) against distances (a) d_{C3-C4} , (b) d_{C3-C5} , (c) d_{C3-C6} , (d) d_{C4-C5} , (e) d_{C4-C6} , and (f) d_{C5-C6} , where d_{A-B} refers to the distance between atoms A and B atoms, and indices for C atoms are shown in the main text (Fig. 4(a)).

Figure S4. The plotted diradical character (y) against distances (a) d_{C1-H1} , (b) d_{C2-H2} , (c) d_{C4-H3} , and (d) d_{C5-H4} , where d_{A-B} refers to the distance between atoms A and B atoms, and indices for C atoms are shown in the main text (Fig. 4(a)).

Figure S5. The plotted diradical character (y) against angles (a) $A_{C6-C1-C2}$, (b) $A_{C1-C2-C3}$, (c) $A_{C2-C3-C4}$, (d) $A_{C3-C4-C5}$, (e) $A_{C4-C5-C6}$, and (f) $A_{C5-C6-C1}$, where A_{A-B-C} refers to the angle between atoms ABC (around atom B), and indices for C atoms are shown in the main text (Fig. 4(a)).

Figure S6. The plotted diradical character (*y*) against dihedral angles (a) $D_{C6-C1-C2-C3}$, (b) $D_{C1-C2-C3-C4}$, (c) $D_{C2-C3-C4-C5}$, (d) $D_{C3-C4-C5-C6}$, (e) $D_{C4-C5-C6-C1}$, and (f) $D_{C5-C6-C1-C2}$, where $D_{A-B-C-D}$ refers to the angles between planes ABC and BCD, and indices for C atoms are shown in the main text (Fig. 4(a)).

10 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Figure S7. The dependence of the diradical character on the distance between atoms C3 and C6 when the optimised p-benzyne is systematically distorted (the distortion is shown in the left panel). The explanation for this index is provided in the main text (Fig. 4(a)).

Figure S8. The dependence of the diradical character on the distance between atoms C2 and C4 atoms when the optimised p-benzyne is systematically distorted (the distortion is shown in the left panel). The explanation for this index is provided in the main text (Fig. 4(a)).

Figure S9. The dependence of the diradical character on the distance between atoms (a) C1 and C4 and (b) C2 and C5 when the optimised p-benzyne is systematically distorted (the distortion is shown in Fig. S8). The explanation for this index is provided in the main text (Fig. 4(a)).

Figure S10. The dependences of the number of valence electrons of C3 and C6 in the Model D on the k-points sampling ($n_k \times n_k \times 1$).