Supporting Information

Synergistic Theoretical and Experimental Study on Ion Dynamics of Bis(trifluoromethanesulfonyl)imide-based Alkali Metal Salts for Solid Polymer Electrolytes

Brigette Althea Fortuin^{1,2,3}, Jon Otegi², Juan Miguel López del Amo¹, Sergio Rodriguez Peña^{1,2}, Leire Meabe¹, Hegoi Manzano^{2*}, María Martínez-Ibañez^{1*}and Javier Carrasco^{1,4*}

 ¹ Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
 ² Department of Physics, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
 ³ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens Cedex, France

⁴ IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

*Javier Carrasco: E-mail: jcarrasco@cicenergigune.com

*Maria Martinez-Ibañez: E-mail: <u>mmartinez@cicenergigune.com</u>

*Hegoi Manzano: E-mail: <u>hegoi.manzano@ehu.eus</u>

Atom	<i>q</i> (e)	σ (Å)	ε (kJ mol ⁻¹)	Bond	r ₀ (Å)	k_r (kJ mol ⁻¹ Å ⁻²)	Angle	$ heta_0$ (degree)	$k_{ heta}$ (kJ mol ⁻¹ rad ⁻²)
C1	-0.18	3.50	0.276	C-C	1.529	2242.624	С-С-Н	110.7	313.800
H_1	0.06	2.50	0.126	C-H	1.090	2845.120	Н-С-Н	107.8	276.144
C2	0.14	3.50	0.276	C-0	1.410	2677.760	Н-С-О	109.5	292.880
H_2	0.03	2.50	0.126				C-C-O	109.5	418.400
0	-0.40	2.90	0.586				С-О-С	109.5	502.080
							C-C-C	112.7	488.273
	Dihedral		$V_1 (kJ mol^{-1})$		V_2 (kJ m	ol^{-1})	V_3 (kJ mol ⁻¹	1)	$V_4 (kJ mol^{-1})$
	С-С-О-С		1.7154		2.845	51	1.0460		-5.6066
	Н-С-С-Н		0.6276	1.8828		28	0.0		-2.5104
	Н-С-С-О		0.9791		2.937	70	0.0		-3.9162
	Н-С-О-С		1.5899	4.7698		8	0.0		-6.3597
	0-C-C-0		-1.1506	1.1506		0.0		0.0	
	С-С-С-Н		0.6276	1.8828		28	0.0		-2.5104
	C-C-C-O		2.8744		0.5816		2.0920		-5.5480

Table S1: Force field parameters for PEO (Figure S4 (a)) including non-bonded parameters; atomic point charges (*q*), and Lennard-Jones parameters with C₁ and H₁ referring to the terminal methyl groups of the PEO chains; and bonded parameters used in Gromacs^{1,2} and LAMMPS^{3,4} simulations.

Atom	σ (Å)	ε (kJ mol ⁻¹ l)	Bond	r _o (Å)	k_r (kI mol ⁻¹ Å ⁻²)	Angle	θ_0 (degree)	k_{θ} (kI mol ⁻¹ rad ⁻²)
F	2.95	0.22175	C-F	1.332	3071.056	F-C-F	109.1	644.336
С	3.50	0.27614	C-S	1.770	2845.120	F-C-S	109.5	418.400
S	3.55	1.04600	N-S	1.670	3631.712	C-S-N	103.0	836.800
0	2.96	0.71128	0-S	1.440	5857.600	C-S-0	108.9	619.232
Ν	3.25	0.71128				N-S-0	107.0	1004.160
Li	2.13	0.07600				0-S-0	119.0	870.232
Na	3.33	0.01598				S-N-S	125.6	671.000
К	4.94	0.00137						
Cs	6.72	0.00034						
	Dihedral		V ₁ (kJ mo	pl^{-1})	$V_2 (kJ \ mol^{-1})$		$V_3 (kJ mol^{-1})$	V_4 (kJ mol ⁻¹)
	F-C-S-N 0.6610 1.9830			0.0000	-2.6440			
	F-C-S-O 0.7255 2.2		2.1765		0.0000	-2.9020		
	S-N-S-C 45.4636 -36.3221			-18.7348	5.5755			
	S-N-S-O -0.0225			0.0000	0.0300			
	F-C-S-N		0.6610		1.9830		0.0000	-2.6440

Table S2: Force field parameters for XTSFI (Figure S4 (b)) including non-bonded parameters; Lennard-Jones parameters; and bonded parameters used in both GROMACS^{1,2,5,6} and LAMMPS simulations^{2,5,6}.

Table S3: Lithium-ion molecular speciation as a function of LiTFSI salt concentration.

EO/Li+ ratio	Isolated Li+(%)	$Li^{+} - 0^{-} (TFSI^{-}) (\%)$	$Li^{+} - O^{-}$ (PEO) (%)	$Li^{+} - 0^{-} (PE0^{TFSI^{-}})$ (%)
6:1	0	0.04	76.55	23.44
16:1	0	0	98.05	1.95
20:1	0	0	98.60	1.40
32:1	0	0	99.04	0.96

Table S4: Measured parameters and calculated lithium-ion transference and transport numbers based on EIS and MD, respectively, for $PEO_n/LiTFSI$ SPEs at 70 °C.

EO/Li⁺ ratio	<i>I</i> i (μΑ)	<i>I</i> _{ss} (μΑ)	$ m R_{Li^+,initial}$ (Ω)	R _{Li} ⁺ , ss (Ω)	ΔV (mV)	$T_{Li^+}^{EIS}$	$t_{Li^+}^{MD}$
6:1	2	9	313	348		0.16 ± 0.025	0.22
16:1	4	2	201	193		0.22 ± 0.024	0.31
20:1	145	67	43	40	10	0.24 ± 0.024	0.31
32:1	83	37	101	107		0.22 ± 0.026	0.30
64:1	105	51	53	32		0.26 ± 0.025	-

Table S5: Thermal properties of neat PEO and PEO_n/LiTFSI SPEs.

EO/Li⁺ ratio	<i>T</i> _g (°C)	<i>T</i> _m (°C)	$\Delta H_{\rm m}$ (J g ⁻¹)	χc
Neat PEO	_	67	117	57
6:1	-26	55	3	6
16:1	- 35	49	52	36
20:1	- 35	55	70	45
32:1	- 43	56	84	49
64:1	_	62	104	56

Table S6: Raman Spectroscopy peak deconvolution analysis as a function of temperature and LiTFSI salt concentration.

EO/Li⁺ ratio	25 °C (non-	preheated)	40	٥°C	70 °C	
	Dissociated LiTFSI (%)	Associated LiTFSI (%)	Dissociated LiTFSI (%)	Associated LiTFSI (%)	Dissociated LiTFSI (%)	Associated LiTFSI (%)
6:1	90	10	85	15	77	23
16:1		0	93	7	96	4
20:1	100		100	0	100	0
32:1	- 100		100	0	100	0
64:1			100	0	100	0

Table S7: Linewidth, chemical shifts, and deconvolution values of the ⁷Li MAS-NMR spectra from Figure 4. Narrower components are highlighted in orange, while broader components are highlighted in white.

Temperature	Linewic	lth (Hz)	Chemical s	shift (ppm)	Deconvoluted spectra (%)	
(°°)	PEO ₆ /LiTFSI	PEO32/LiTFSI	PEO ₆ /LiTFSI	PEO ₃₂ /LiTFSI	PEO ₆ /LiTFSI	PEO ₃₂ /LiTFSI
40	12	15	-1.37	-1.45	47	46
10	365	167	-1.23	-1.54	53	54
50	9	12	-1.35	-1.44	43	48
50	175	70	-1.34	-1.48	56	52
60	7	10	-1.35	-1.42	36	63
	84	39	-1.35	-1.44	64	38
70	6	9	-1.35	-1 41	32	100
70	40	,	-1.36	1.11	68	0
80	6	q	-1.34	-1.40	33	100
00	28	,	-1.34	-1.40	67	0

Figure S1: Ionic conductivity of $PEO_{20}/LiTFSI$ simulated for 100 and 200 ns, compared to experimental values obtained from literature⁷.

Figure S2: Ionic conductivity of PEO₂₀/LiTFSI at different temperatures for three simulation box sizes: small (11 ion pairs), medium (40 ion pairs), and large (70 ion pairs).

Figure S3: Ionic conductivity of PEO₂₀/LiTFSI at different temperatures with different initial conditions modelled with a medium sized simulation box. The error for the ionic conductivity at each studied temperature is \sim 30 %.

Figure S4: Chemical structures of (a) PEO and (b) TFSI[–] with the corresponding adopted acronyms, and (c) the atomic charges of each atom found in TFSI[–], utilized in MD simulations (Tables S1 – S2).

Figure S5: Mean square displacement functions of lithium-ions (solid line) and PEO (dashed line) as a function of LiTFSI salt for the studied $PEO_n/LiTFSI$ SPEs, where n = 6, 16, 20, or 32.

Figure S6: Lithium-ion transport mechanism utilizing a single lithium-ion as reference particle, for (a) PEO₆/LiTFSI and (b) PEO₃₂/LiTFSI. The O index represents the number of oxygens from PEO the lithium-ion interacts with, and the TFSI index represents the number of oxygen atoms from TFSI⁻ ions the lithium-ion interacts with, over the total simulation time of 200 ns. The delineated dashed line signifies the separation between either one TFSI⁻ ion from the next, or one PEO chain from the next.

Figure S7: DSC traces of neat PEO (purple) and studied PEO_n/LiTFSI SPEs, where n = 6 (black), 16 (blue), 20 (green), 32 (red), or 64 (magenta).

Figure S8: Raman spectra of the 760 - 730 cm⁻¹ vibrational window illustrating the *S*–*N*–*S* vibration for PEO_n/LiTFSI SPEs at (a) 25 °C, and (b) 40 °C, with spectra of neat LiTFSI and neat PEO recorded at 25 °C. The two vertical dotted lines correspond to the coordinated contact ion pair position at 747 cm⁻¹ (orange) and the free ion pair position at 740 cm⁻¹ (purple), respectively.

Activation energies of the transport mechanisms

Activation energies were calculated by fitting the MD simulated ionic conductivity results to the Arrhenius equation, equation S1:

$$\sigma = A e^{\frac{E_A}{k_B T}}$$
(S1)

Upon linearization of equation S1, equation S2 is plotted as shown in Figure S9:

$$ln\sigma = \ln A - \frac{E_A}{k_B \times T}$$
(S2)

By performing a linear regression of the natural logarithm of the ionic conductivity versus the inverse of the temperature, the activation energy may be deduced from the slope (cf. Table S8).

Table S8: Activation energies (along with the R^2 values of the fitting to the Arrhenius equation) for the studied PEO₂₀/XTFSI systems, where X = Li, Na, K, and Cs.

Cation	E _A (eV)	R ²
Li+	0.1837	0.9629
Na+	0.1579	0.9812
K+	0.1582	0.9947
Cs+	0.1816	0.9564

Figure S9: Linearized fitting of the ionic conductivity for the studied PEO₂₀/XTFSI systems; with lithium (blue), sodium (green), potassium (orange), and cesium (red) cations.

REFERENCES

- 1 S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. Van Der Spoel, B. Hess and E. Lindahl, GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit, *Bioinformatics*, 2013, **29**, 845–854.
- L. Meabe, S. R. Peña, M. Martinez-Ibañez, Y. Zhang, E. Lobato, H. Manzano, M. Armand, J. Carrasco and H. Zhang, Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends, *Journal of Physical Chemistry C*, 2020, **124**, 17981–17991.
- 3 N. Kondratyuk, V. Nikolskiy, D. Pavlov and V. Stegailov, GPU-accelerated molecular dynamics: State-of-art software performance and porting from Nvidia CUDA to AMD HIP, *Int J High Perform Comput. Appl*, 2021, **35**, 312–324.
- 4 C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot and H. Grubmüller, More bang for your buck: Improved use of GPU nodes for GROMACS 2018, *J Comput. Chem*, 2019, **40**, 2418–2431.
- 5 A. S. L. Gouveia, C. E. S. Bernardes, L. C. Tomé, E. I. Lozinskaya, Y. S. Vygodskii, A. S. Shaplov, J. N. C. Lopes and I. M. Marrucho, Ionic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model, *Physical Chemistry Chemical Physics*, 2017, **19**, 29617–29624.
- J. N. Canongia Lopes and A. A. H. Pádua, CL&P: A generic and systematic force field for ionic liquids modeling, *Theor Chem Acc*, 2012, **131**, 1129.
- 7 U. Oteo, M. Martinez-Ibañez, I. Aldalur, E. Sanchez-Diez, J. Carrasco, M. Armand and H. Zhang, Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts, *ChemElectroChem*, 2019, **6**, 1019–1022.