Supporting Information

Conducting 1D Nanostructures from Light Stimulated Copper Metalated Porphyrin – Dibenzothiophene

Yelukala Rama Krishna, a Madarapu Naresh, a,b Botta Bhavani, a,b Seelam Prasanthkumar* a,b

a Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, T.S., India.
b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Email of corresponding (*) E-mail: prasanth@iict.res.in (ORCID: 0000-0001-6287-1977)
Supporting information

Table of contents

1. Synthesis of $\text{PF}_\text{b-DBT}$, PCu-DBT and PZn-DBT ..S3-S5

2. ^1H NMR Spectra ..S5-S6

3. ^{13}C NMR Spectra ..S7

4. MALDI-TOF-MS Spectra ..S8-S9

5. Theoretical calculations of P-DBT derivatives ..S9

6. Photophysical data of $\text{PF}_\text{b-DBT}$ and PZn-DBT ...S9-S11

7. MALDI-TOF-MS of light stimulated P-DBT derivatives ...S11

8. Spectroelectrochemistry of $\text{PF}_\text{b-DBT}$...S12

9. Electron microscopic images of $\text{PF}_\text{b-DBT}$...S12

10. Electrochemical Impedance analysis of $\text{PF}_\text{b-DBT}$ and PCu-DBT at before and light illuminations conditions ...S13-S15
1. Synthesis of P$_{Fb}$-DBT, P$_{Cu}$-DBT and P$_{Zn}$-DBT

1.1. Synthesis of P$_{Fb}$-DBT:

Scheme S1. Reagent and Conditions: (i) Pd(PPh$_3$)$_2$Cl$_2$, Na$_2$CO$_3$, THF, Toluene, 90 °C, 12 h, N$_2$ atmosphere, yield: 60%.

Synthetic Procedure for P$_{Fb}$-DBT: To a 5 mL THF solution of dibromoporphyrin (500 mg, 0.537 mmol), dibenzo[b,d]thiophen-2-ylboronic acid (1) (1160 mg, 2.296 mmol) in 20 mL toluene, 1M Na$_2$CO$_3$ and bis(triphenylphosphine)palladium(II) dichloride Pd(PPh$_3$)$_2$Cl$_2$ (catalytic amount) were added and refluxed for 12 h at 70 °C under N$_2$ atmosphere. Subsequently, the reaction mixture was washed with ethyl acetate/water and organic layer was separated and dried over sodium sulphate. The crude product was purified by column chromatography (silica gel 100 – 200 mesh, DCM/hexane to give purple solid P$_{Fb}$-DBT (yield: 60%).

1H NMR (400 MHz, CDCl$_3$) δ: 8.69 – 8.39 (m, 9H), 8.30 – 8.06 (m, 4H), 7.76 (s, 2H), 7.55 – 7.33 (m, 6H), 6.81 (s, 3H), 4.00 (s, 1H), 3.74 (d, J = 31.5 Hz, 8H), 1.51 (s, 1H), 1.28 (d, J = 15.5 Hz, 2H), 1.17 (s, 8H), 0.94 – 0.67 (m, 17H), 0.59 – 0.39 (m, 33H), -2.61 (d, J = 53.9 Hz, 2H). 13C NMR (126 MHz, CDCl$_3$) δ: 160.13, 145.64, 140.98, 137.81, 135.64, 135.05, 132.67, 130.99, 130.50, 129.95, 126.70, 124.43, 123.72, 122.86, 122.15, 121.13, 120.40, 116.01, 113.01, 105.07, 68.65, 67.90, 38.75, 31.55, 30.40, 29.66, 29.34, 29.05, 25.38, 23.78, 23.10, 22.82, 22.33, 14.21, 13.95, 11.04. MALDI-TOF-MS (m/z) = 1339.67 (calculated mass = 1339.763).
1.2. Synthesis of \(\text{P}_{\text{Cu}}\text{-DBT} \):

\[
\text{P}_{\text{Cu}}\text{-DBT} \quad \text{P}_{\text{Cu}}\text{-DBT}
\]

\textbf{Scheme S2}. Reagent and Conditions: (ii) \(\text{Cu(OAc)}_2 \), DCM/MeOH (1:3 v/v), 3 h, 25 °C, \(\text{N}_2 \) atmosphere, yield: 70%.

\textbf{Synthetic Procedure for \(\text{P}_{\text{Cu}}\text{-DBT} \)}: A mixture of \(\text{P}_{\text{Pb}}\text{-DBT} \) (200 mg, 0.00142 mmol) and \(\text{Cu(OAc)}_2 \) (261 mg, 0.0023 mmol) in DCM/CH\(_3\)OH (1:3 v/v) were refluxed for 3 h under \(\text{N}_2 \) atmosphere at 25 °C. The progress of the reaction monitored by thin layer chromatography (TLC) and excess solvent was removed under reduced pressure. The extraction performed with hexane/DCM. The organic layer was washed with water and dried over \(\text{Na}_2\text{SO}_4 \). The solid residue was subjected to column chromatography (silica gel: 100–200 mesh, DCM/ hexane) to give pink coloured solid (yield: 70%); (MALDI-TOF-MS (m/z) = 1399.67 (calculated mass = 1399.62).

1.3. Synthesis of \(\text{P}_{\text{Zn}}\text{-DBT} \):

\[
\text{P}_{\text{Zn}}\text{-DBT} \quad \text{P}_{\text{Zn}}\text{-DBT}
\]

\textbf{Scheme S2}. Reagent and Conditions: (iii) \(\text{Zn(OAc)}_2 \), DCM/MeOH (1:3 v/v), 3 h, 25 °C, \(\text{N}_2 \) atmosphere, yield: 70%.

\textbf{Synthetic Procedure for \(\text{P}_{\text{Zn}}\text{-DBT} \)}: The synthetic strategy followed the \(\text{P}_{\text{Cu}}\text{-DBT} \) procedure by simple modification of \(\text{Cu(OAc)}_2 \) with \(\text{Zn(OAc)}_2 \).
1H NMR (400 MHz, CDCl$_3$) δ: 8.70 (dd, $J = 23.3$, 10.5 Hz, 6H), 8.42 (d, $J = 7.8$ Hz, 1H), 8.27 – 8.11 (m, 3H), 7.76 (dd, $J = 11.8$, 7.3 Hz, 2H), 7.49 (t, $J = 8.2$ Hz, 2H), 7.35 (dd, $J = 19.3$, 7.6 Hz, 3H), 7.25 – 7.15 (m, 2H), 6.83 (d, $J = 8.3$ Hz, 3H), 6.39 (t, $J = 8.1$ Hz, 1H), 3.91 – 3.60 (m, 8H), 1.78 – 1.48 (m, 2H), 1.28 (d, $J = 1.8$ Hz, 3H), 1.17 (t, $J = 3.8$ Hz, 12H), 0.95 – 0.74 (m, 12H), 0.54 – 0.31 (m, 33H). 13C NMR (101 MHz, CDCl$_3$) δ: 158.93, 150.83, 150.00, 149.74, 148.07, 145.85, 144.58, 141.67, 139.74, 137.38, 135.09, 134.52, 134.07, 133.74, 131.42, 130.56, 129.86, 129.39, 128.65, 125.45, 123.63, 123.44, 123.44, 123.06, 122.46, 121.62, 120.98, 120.49, 119.64, 117.82, 115.83, 114.83, 112.51, 105.13, 104.07, 103.19, 68.32, 68.13, 66.76, 37.59, 34.80, 33.20, 30.65, 30.33, 29.25, 28.90, 28.16, 27.51, 24.95, 24.19, 22.62, 21.78, 21.15, 13.07, 12.76, 9.88. (MALDI-TOF-MS (m/z) = 1401.67 (calculated mass = 1401.62).

2. 1H NMR Spectra
2.1. 1H NMR of P$_{Fb}$-DBT:

![Figure S1. 1H NMR Spectrum of P$_{Fb}$-DBT.](image)
2.2. 1H NMR of P_{Zn}-DBT:

![Figure S2. 1H NMR Spectrum of P_{Zn}-DBT.]

3. 13C NMR Spectra

3.1. 13C NMR of P_{Fl}-DBT:

![Figure S3. 13C NMR Spectrum of P_{Fl}-DBT.]

S6
3.2. 13C NMR of P$_{Zn}$-DBT:

![Figure S4. 13C NMR Spectrum of P$_{Zn}$-DBT.]

4. MALDI-TOF-MS Spectra

4.1. MALDI-TOF-MS of P$_{Fb}$-DBT:

MALDI-TOF-MS (m/z) = 1339.67 (calculated mass = 1339.763).

![Figure S5. MALDI-TOF-MS Spectrum of P$_{Fb}$-DBT.]

S7
4.2. MALDI-TOF-MS of P_{Zn}-DBT:

(MALDI-TOF-MS (m/z) = 1401.67 (calculated mass = 1401.62).

![MALDI-TOF-MS Spectrum of P_{Zn}-DBT](image)

Figure S6. MALDI-TOF-MS Spectrum of P_{Zn}-DBT.

4.3. MALDI-TOF-MS of P_{Cu}-DBT:

(MALDI-TOF-MS (m/z) = 1399.67 (calculated mass = 1399.62).

![MALDI-TOF-MS Spectrum of P_{Cu}-DBT](image)

Figure S7. MALDI-TOF-MS Spectrum of P_{Cu}-DBT.
5. Theoretical calculations of P-DBT derivatives:

Figure S8. Theoretical calculations of P$_{\text{Fb}}$-DBT, P$_{\text{Cu}}$-DBT and P$_{\text{Zn}}$-DBT and their HOMO and LUMO energy levels.

6. Photophysical data of freebase and metalated P-DBT derivatives:

Figure S9. UV-vis optical absorption spectra of a) P$_{\text{Fb}}$-DBT, b) P$_{\text{Cu}}$-DBT and c) P$_{\text{Zn}}$-DBT in various solvents such as tetrahydrofuran (THF), chloroform (CHCl$_3$), dichloromethane (CH$_2$Cl$_2$) and toluene at a concentration of 1 × 10$^{-4}$ M at 25 °C.
Figure S10. UV-vis optical absorption spectra of P_{Fb}-DBT, P_{Cu}-DBT and P_{Zn}-DBT in tetrahydrofuran (THF) and acetonitrile (ACN) at a concentration of 1×10^{-4} M at 25 °C.

Figure S11. a) UV-vis optical absorption spectra of P_{Fb}-DBT in chloroform with different interval of time from 0 to 60 min at 25 °C. b) The corresponding emission spectra of P_{Fb}-DBT at an excitation wavelength of 420 nm.

Figure S12. UV-vis optical absorption spectra of P_{Zn}-DBT in chloroform with different interval of time from 0 to 120 min at 25 °C.
Table S1. Photophysical and electrochemical data of P-DBT derivatives

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Samples</th>
<th>Absorption λ<sub>max</sub> (nm)</th>
<th>Emission λ<sub>ems</sub> (nm)</th>
<th>Lifetime τ (ns) Before</th>
<th>After light</th>
<th>E<sub>Ox</sub></th>
<th>E<sub>Red</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before</td>
<td>After light</td>
<td>Before</td>
<td>After light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>P<sub>Fb</sub>-DBT</td>
<td>421 457</td>
<td>728</td>
<td>8.41</td>
<td>4.48</td>
<td>1.302</td>
<td>-0.995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>514 597</td>
<td>589 652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P<sub>Cu</sub>-DBT</td>
<td>419 425</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>0.84</td>
<td>-0.983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P<sub>Zn</sub>-DBT</td>
<td>422 423</td>
<td>668</td>
<td>2.89</td>
<td>0.64</td>
<td>0.66</td>
<td>-1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>547 460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S13. UV-vis optical absorption spectra of a) P_{Fb}-DBT, b) P_{Cu}-DBT and c) P_{Zn}-DBT in tetrahydrofuran and recorded their spectral changes whilst addition of acid and base.

7. MALDI-TOF-MS of light stimulated P-DBT derivatives:

Figure S14. MALDI-TOF-MS spectra of light stimulated samples: a) [H₂P_{Fb}-DBT]⁺[Cl⁻], b) H⁺[P_{Cu}-DBT(Cl)]⁺ and c) P_{Fb}-DBT.
8. Spectroelectrochemistry of P_{Fb}-DBT:

![Spectroelectrochemical UV-vis optical absorption spectra of P_{Fb}-DBT in chloroform: a) oxidation potential (1.30 V) and b) reduction potential (-1.01 V).](image)

Figure S15. Spectroelectrochemical UV-vis optical absorption spectra of P_{Fb}-DBT in chloroform: a) oxidation potential (1.30 V) and b) reduction potential (-1.01 V).

9. Electron microscopic images of P_{Fb}-DBT:

![Electron microscopic images of P_{Fb}-DBT](image)

Figure S16. (a,b) Scanning electron microscopic and transmission electron microscopic images of P_{Fb}-DBT and [H₂P_{Fb}-DBT]⁺Cl⁻ aggregates were drop-casted from methanol solution at 25 °C.

![Electron microscopic images of light illuminated P_{Fb}-DBT aggregates](image)

Figure S17. (a-d) Scanning electron microscopic images of light illuminated P_{Fb}-DBT aggregates were drop-casted from methanol solution at different time intervals of light illumination in chloroform.
10. Electrochemical Impedance analysis of P_{Fb}-DBT and P_{Cu}-DBT at before and light illuminations conditions:

10.1. Electrochemical Impedance analysis of before and after light illuminated P_{Fb}-DBT:

Figure S18. Electrochemical impedance spectral data of P_{Fb}-DBT. (a,d) Temperature dependent Nquist plot of before and after light illuminated P_{Fb}-DBT from 25 °C to 75 °C (b,e) Corresponding temperature dependent changes of logarithmic frequency vs Imaginary impedance. (c,f) Plot represents the temperature in Kelvin against bulk resistance at both conditions to determine the electronic and ionic conduction mechanism.
10.2. Electrochemical Impedance analysis of $P_{\text{Cu-DBT}}$:

Figure S19. Electrochemical impedance spectral data of $P_{\text{Cu-DBT}}$: (a) Nyquist plot with variable temperature from 25 °C to 75 °C. (b) Corresponding temperature dependent changes of logarithmic frequency vs Imaginary impedance. (c) Plot represents the bulk resistance against temperature.

10.3. Electrochemical Impedance analysis of light illuminated $P_{\text{Cu-DBT}}$:

Figure S20. a) Temperature-dependent changes of logarithmic frequency vs Imaginary impedance. b) plot of bulk resistance against the increase in temperature from 25 °C to 75 °C (298 – 348 K) of light-illuminated $P_{\text{Cu-DBT}}$.
10.4. Summary of electrochemical impedance data of PFb-DBT and PCu-DBT:

Table S2. Electrochemical impedance spectroscopy data of PFb-DBT and PCu-DBT; where, $R_b =$ bulk resistance; $f_b =$ bulk frequency, $\sigma =$ specific conductivity, $C_b =$ bulk capacitance and $\tau_b =$ the bulk relaxation time and estimated for the samples at variable temperatures. (* represents light illuminated condition)

<table>
<thead>
<tr>
<th>Samples</th>
<th>T (K)</th>
<th>R_b (GΩ)</th>
<th>f_b (MHz)</th>
<th>$\sigma \times 10^{-3}$ (S/cm)</th>
<th>C_b (fF)</th>
<th>τ_b (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFb-DBT</td>
<td>298</td>
<td>1.1</td>
<td>1.04</td>
<td>0.09</td>
<td>1.0</td>
<td>1.529</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>3.7</td>
<td>2.54</td>
<td>0.03</td>
<td>0.2</td>
<td>0.626</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>3.9</td>
<td>4.03</td>
<td>0.02</td>
<td>0.1</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>3.3</td>
<td>3.20</td>
<td>0.03</td>
<td>0.2</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>338</td>
<td>2.5</td>
<td>2.57</td>
<td>0.04</td>
<td>0.3</td>
<td>0.618</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>1.6</td>
<td>2.03</td>
<td>0.06</td>
<td>0.5</td>
<td>0.782</td>
</tr>
<tr>
<td>PFb-DBT*</td>
<td>298</td>
<td>4.8</td>
<td>4.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>6.9</td>
<td>4.48</td>
<td>0.01</td>
<td>0.05</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>5.8</td>
<td>5.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>4.1</td>
<td>4.01</td>
<td>0.03</td>
<td>0.10</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>338</td>
<td>1.5</td>
<td>1.79</td>
<td>0.06</td>
<td>0.60</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>7.6</td>
<td>1.61</td>
<td>0.01</td>
<td>1.0</td>
<td>0.989</td>
</tr>
<tr>
<td>PCu-DBT</td>
<td>298</td>
<td>0.5</td>
<td>7.97</td>
<td>0.17</td>
<td>0.40</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>2.7</td>
<td>1.20</td>
<td>0.03</td>
<td>0.50</td>
<td>1.325</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>7.2</td>
<td>2.20</td>
<td>0.013</td>
<td>0.09</td>
<td>0.721</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>8.7</td>
<td>7.96</td>
<td>0.01</td>
<td>0.02</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>338</td>
<td>7.8</td>
<td>7.94</td>
<td>0.012</td>
<td>0.03</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>8.3</td>
<td>6.35</td>
<td>0.01</td>
<td>0.03</td>
<td>0.250</td>
</tr>
<tr>
<td>PCu-DBT*</td>
<td>298</td>
<td>0.0002</td>
<td>2.53</td>
<td>38.0</td>
<td>252.0</td>
<td>0.628</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>0.1</td>
<td>1.62</td>
<td>0.09</td>
<td>1.0</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>6.4</td>
<td>7.73</td>
<td>0.01</td>
<td>0.03</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>4.6</td>
<td>0.64</td>
<td>0.02</td>
<td>0.05</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>338</td>
<td>3.0</td>
<td>0.64</td>
<td>0.03</td>
<td>0.08</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>3.1</td>
<td>5.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.316</td>
</tr>
</tbody>
</table>