Supporting Information

Electrochemical Ammonia Synthesis under Ambient Conditions using TM-embedded Porphine-Fused Sheets as Single-Atom Catalysts

Ying Yao,^{1,2} Sheng-Yao Lv,^{1,2} Guoliang Li,*1 and Li-Ming Yang*2

¹Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China. (email: <u>glli@scnu.edu.cn</u>)

²Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. (email: <u>Lmyang@hust.edu.cn</u>)

- Table S1. Lattice constants, space groups, point groups, magnetic moments and energies of the TM-Por monolayers.
- **Table S2.** ΔG_{*N_2} for end-on and side-on adsorptions and N = N bond lengths of adsorbed N₂ molecules.
- **Table S3.** $\Delta G_{*N_2 \rightarrow *N_2H}$ and $\Delta G_{*NH_2 \rightarrow *NH_3}$ in high throughput screening.
- **Table S4.** Comparisons between the nitrogen (ΔG_{*N_2}) and hydrogen adsorptions (ΔG_{*H}).
- Table S5. Thermal corrections of different adsorbed species.
- **Table S6.** ΔG for different protonation steps of eNRR along the end-on distal pathway on Mo-Por, Tc-Por, and Nb-Por.
- Fig. S1. Free energy profiles and relevant intermediates of N_xH_y -Mo-Por, N_xH_y -Tc-Por, and N_xH_y -Nb-Por in various eNRR pathways.
- **Table S7.** N-N bond lengths in N_xH_y -TM-Por (TM = Mo, Tc, Nb) along the distal pathway.
- Table S8. Charge transfers in N_xH_y-Mo-Por, N_xH_y-Tc-Por, and N_xH_y-Nb-Por.
- Fig. S2. AIMD simulation plots of the TM-Por (TM = Mo, Tc, Nb) catalysts at 500K.

Table S1. Lattice constants, space groups, point groups, magnetic moments and energies of the TM-Por monolayers.

TM-Por	Crystal structure top (up) and side (down) views	Lattice constant (<i>a</i> , <i>b</i> and <i>c</i>)/Å	Space group	Point group	Magnetic moment	Energy/eV
Sc-Por		<i>a</i> =8.58245 <i>b</i> =8.58245 <i>c</i> =15.01112	P4/mm (#99)	C _{4v}	0	-201.37057
Ti-Por	0-30-00-00-0	<i>a</i> =8.53495 <i>b</i> =8.53495 <i>c</i> =15.17867	P4/mmm (#123)	D _{4h}	1.139	-201.56274
V-Por		<i>a</i> =8.51386 <i>b</i> =8.51386 <i>c</i> =15.25397	P4/mmm (#123)	D _{4h}	2.517	-202.14904
Cr-Por		<i>a</i> =8.50517 <i>b</i> =8.50517 <i>c</i> =15.28516	P4/mmm (#123)	D_{4h}	3.524	-202.99278
Mn-Por		<i>a</i> =8.45749 <i>b</i> =8.45749 <i>c</i> =15.45799	P4/mmm (#123)	D _{4h}	2.903	-202.05345
Fe-Por		<i>a</i> =8.43379 <i>b</i> =8.43379 <i>c</i> =15.54498	P4/mmm (#123)	D_{4h}	1.861	-200.57118
Co-Por		<i>a</i> =8.42270 <i>b</i> =8.42270 <i>c</i> =15.58595	P4/mmm (#123)	D _{4h}	0.839	-199.18339

Ni-Por	<i>a</i> =8.41060 <i>b</i> =8.41060 <i>c</i> =15.63081	P4/mmm (#123)	D _{4h}	-0.000	-197.88221
Cu-Por	<i>a</i> =8.48977 <i>b</i> =8.48977 <i>c</i> =15.34065	P4/mmm (#123)	D _{4h}	0.866	-195.62720
Zn-Por	<i>a</i> =8.53333 <i>b</i> =8.53333 <i>c</i> =15.18443	P4/mmm (#123)	D _{4h}	0.000	-194.18390
Y-Por	<i>a</i> =8.59311 <i>b</i> =8.59311 <i>c</i> =14.97388	P4/mm (#99)	C_{4v}	-0.000	-201.50627
Zr-Por	<i>a</i> =8.56910 <i>b</i> =8.56910 <i>c</i> =15.05793	P4/mm (#99)	C_{4v}	0.486	-202.12896
Nb-Por	<i>a</i> =8.57089 <i>b</i> =8.57089 <i>c</i> =15.05164	P4/mmm (#123)	D _{4h}	1.456	-202.29540
Mo-Por	<i>a</i> =8.56571 <i>b</i> =8.56571 <i>c</i> =15.06984	P4/mmm (#123)	D _{4h}	3.033	-202.46706
Tc-Por	<i>a</i> =8.52328 <i>b</i> =8.52328 <i>c</i> =15.22027	P4/mmm (#123)	D _{4h}	2.708	-201.86266

Ru-Por	<i>a</i> =8.49940 <i>b</i> =8.49940 <i>c</i> =15.30590	P4/mmm (#123)	D _{4h}	1.652	-200.71586
Rh-Por	<i>a</i> =8.47605 <i>b</i> =8.47605 <i>c</i> =15.39035	P4/mmm (#123)	D _{4h}	0.732	-199.48772
Pd-Por	<i>a</i> =8.48548 <i>b</i> =8.48548 <i>c</i> =15.35617	P4/mmm (#123)	D _{4h}	0.000	-197.98363
Ag-Por	<i>a</i> =8.58949 <i>b</i> =8.58949 <i>c</i> =14.98654	P4/mmm (#123)	D_{4h}	0.557	-193.73617
Cd-Por	<i>a</i> =8.65563 <i>b</i> =8.65563 <i>c</i> =14.75836	P4/mmm (#123)	D_{4h}	0.000	-192.86304
Lu-Por	<i>a</i> =8.58709 <i>b</i> =8.58709 <i>c</i> =14.99489	P4/mm (#99)	C_{4v}	0.000	-199.40190
Hf-Por	<i>a</i> =8.56650 <i>b</i> =8.56650 <i>c</i> =15.06707	P4/mm (#99)	C _{4v}	0.619	-203.69129
Ta-Por	<i>a</i> =8.54363 <i>b</i> =8.54363 <i>c</i> =15.14784	P4/mmm (#123)	D _{4h}	1.103	-203.85435

W-Por	<i>a</i> =8.53547 <i>b</i> =8.53547 <i>c</i> =15.17683	P4/mmm (#123)	D _{4h}	2.620	-203.97868
Re-Por	a=8.51623 b=8.51623 c=15.24545	P4/mmm (#123)	D _{4h}	2.592	-203.14203
Os-Por	<i>a</i> =8.46862 <i>b</i> =8.46862 <i>c</i> =15.41736	P4/mmm (#123)	D _{4h}	0.712	-202.04842
Ir-Por	a=8.45895 b=8.45895 c=15.45265	P4/mmm (#123)	D_{4h}	-0.000	-200.93570
Pt-Por	<i>a</i> =8.47533 <i>b</i> =8.47533 <i>c</i> =15.39297	P4/mmm (#123)	D_{4h}	0.000	-199.33241
Au-Por	a=8.47533 b=8.47533 c=15.39297	P4/mmm (#123)	D _{4h}	0.053	-194.39559
Hg-Por	a=8.47533 b=8.47533 c=15.39297	P4/mm (#99)	C _{4v}	-0.000	-190.68287

	End-	on	Sid	e-on
TM-Por	$\Delta G_{*N_2}/eV$	R _{N-N} /Å	$\Delta G_{*N_2}/eV$	R _{N-N} /Å
Sc	-0.210	1.125	0.090	
Ti	-0.498	1.135	0.030	
V	-0.354	1.135	0.276	
Cr	/	/	1.321	
Mn	/	/	/	/
Fe	0.227		/	/
Со	0.142		/	/
Ni	/	/	/	/
Cu	/	/	/	/
Zn	/	/	/	/
Y	-0.133	1.131	0.105	
Zr	-0.607	1.140	-0.411	1.178
Nb	-0.619	1.144	-0.371	1.209
Мо	-0.334	1.142	0.328	
Tc	-0.433	1.143	0.490	
Ru	-0.631	1.139	0.512	
Rh	0.368		/	/
Pd	/	/	/	/
Ag	/	/	/	/
Cd	/	/	/	/
Lu	-0.238	1.132	-0.006	1.152
Hf	-0.681	1.143	-0.460	1.186
Та	-0.686	1.149	-0.361	1.226
W	-0.498	1.151	0.001	
Re	-0.560	1.148	0.248	
Os	-0.692	1.145	0.544	
Ir	0.686		/	/
Pt	/	/	/	/
Au	/	/	/	/
Hg	/	/	/	/

Table S2. ΔG_{*N_2} for end-on and side-on adsorptions and $N \equiv N$ bond lengths of adsorbed N_2 molecule. The screening condition is $\Delta G_{*N_2} < 0$ eV.

"/" indicates that TM atom cannot be embedded in the substrate. "—" indicates that the material is excluded because $\Delta G_{*N_2} \ge 0$ eV.

[able S3. $\Delta G_{*N_2 \rightarrow *N_2H}$ and $\Delta G_{*NH_2 \rightarrow *NH}$, in high throughput screening.	The screening criteria is 0.8 eV.
---	---------------------------------	-----------------------------------

Adsorption mode	TM-Por	$\Delta G_{*N_2 \rightarrow *N_2H}/eV$	$\Delta G_{*NH_2 \rightarrow *NH_3}/eV$
	Sc	1.248	/
	Ti	0.809	/
	V	0.924	/
	Y	1.232	/
	Zr	0.623	0.945
	Nb	0.387	0.741
	Мо	0.359	0.040
End-on	Tc	0.408	-0.105
	Ru	1.381	/
	Lu	1.237	/
	Hf	0.589	1.074
	Та	0.285	0.950
	W	0.159	0.584
	Re	0.320	0.330
	Os	1.256	/
	Zr	0.216	0.945
	Nb	-0.029	0.741
Side-on	Lu	0.733	0.064
	Hf	0.146	1.074
	Та	-0.161	0.950

Table S4. Comparisons between the nitrogen (ΔG_{*N_2}) and hydrogen adsorptions (ΔG_{*H}). The screening condition is $\Delta G_{*N_2} \leq \Delta G_{*H}$.

Adsorption mode	TM-Por	$\Delta G_{*N_2}/eV$	$\Delta G_{*H}/eV$
	Nb	-0.619	-0.523
	Мо	-0.334	-0.329
End-on	Tc	-0.433	-0.312
	W	-0.498	-0.588
	Re	-0.560	-0.660
Side-on	Nb	-0.371	-0.523
	Lu	-0.006	-0.108

*NI 11		Mo-Por			Tc-Por			Nb-Por	
$\mathbf{N}_{x}\mathbf{H}_{y}$	ZPE	∫C _p dT	TS	ZPE	∫C _p dT	TS	ZPE	∫C _p dT	TS
${\rm H_2}^a$	0.27	0.09	0.40	0.27	0.09	0.40	0.14	0.05	0.20
${ m N_2}^a$	0.15	0.09	0.59	0.15	0.09	0.59	0.15	0.09	0.59
*N≡N	0.22	0.07	0.13	0.22	0.07	0.13	0.20	0.08	0.17
*N=NH	0.49	0.08	0.15	0.49	0.08	0.16	0.47	0.08	0.16
*N=NH2	0.83	0.09	0.18	0.81	0.09	0.19	0.82	0.09	0.18
*N	0.09	0.03	0.05	0.09	0.03	0.05	0.08	0.03	0.06
*NH	0.36	0.05	0.08	0.33	0.06	0.10	0.36	0.05	0.08
*NH ₂	0.68	0.06	0.10	0.69	0.05	0.09	0.65	0.07	0.12
*NH ₃	1.04	0.07	0.15	1.05	0.07	0.13	1.04	0.07	0.13
*NH=NH	0.83	0.08	0.17	0.84	0.08	0.17	0.80	0.09	0.20
*NH–NH ₂	1.15	0.09	0.18	1.15	0.09	0.18	1.13	0.11	0.23
*NH ₂ -NH ₂	1.53	0.10	0.19	1.52	0.10	0.21	1.51	0.11	0.21
NH ₃ ^a	0.89	0.11	0.60	0.89	0.11	0.60	0.89	0.11	0.60

Table S5. Thermal corrections (eV) of different adsorbed species. The temperature is set to 298.15 K.

^{*a*} from NIST database.

Table S6. ΔG (eV) for different protonation steps of eNRR along the end-on distal pathway on Mo-Por, Tc-Por, and Nb-Por. Red indicates the potential-determining step (PDS).

Protonation Steps	Mo-Por	Tc-Por	Nb-Por
$N_2 + (H^+ + e^-) \rightarrow N = NH$	0.36	0.41	0.39
*N=NH + (H ⁺ + e ⁻) \rightarrow *N–NH ₂	0.07	0.53	-0.56
*N–NH ₂ + (H ⁺ + e^-) \rightarrow *N + NH ₃ (g)	-1.23	-1.85	-0.42
$^{*}N + (H^{+} + e^{-}) \rightarrow ^{*}NH$	-0.09	0.69	-1.05
$^{*}\mathrm{NH}+(\mathrm{H}^{+}+\mathrm{e}^{-})\rightarrow ^{*}\mathrm{NH}_{2}$	-0.27	-0.47	-0.12
$^{*}\mathrm{NH}_{2}+(\mathrm{H}^{+}+\mathrm{e}^{-})\rightarrow ^{*}\mathrm{NH}_{3}(\mathrm{g})$	0.12	-0.06	0.74

Fig. S1. Free energy profiles and relevant intermediates of N_xH_y -Mo-Por, N_xH_y -Tc-Por, and N_xH_y -Nb-Por in various eNRR pathways.

Fig. S1. Continued

Table S7. N-N bond lengths in N_xH_y -TM-Por (TM = Mo, Tc, Nb) along the distal pathway.

*N _x H _y -TM-Por	N ₂ (g)	*N≡N	*N=NH	*N–NH ₂
*N _x H _y -Mo-Por	1.115	1.142	1.235	1.335
*N _x H _y -Tc-Por	1.115	1.143	1.230	1.317
*N _x H _y -Nb-Por	1.115	1.144	1.244	1.355

Table S8. Charge transfers in N_xH_y -Mo-Por, N_xH_y -Tc-Por, and N_xH_y -Nb-Por.

N_xH_y	Moieties	N_xH_y -Mo-Por	N _x H _y -Tc-Por	N _x H _y -Nb-Por
	Por' (moiety1)	0.039	-0.112	0.060
*N=N	TM-N ₄ (moiety2)	-0.321	-0.176	-0.448
	N≡N (moiety3)	0.282	0.288	0.388
	Por' (moiety1)	-0.120	-0.115	-0.172
*N=NH	TM-N ₄ (moiety2)	-0.077	0.128	-0.001
	N=NH (moiety3)	0.198	-0.013	0.173
	Por' (moiety1)	0.151	0.356	-0.045
*N–NH ₂	TM-N ₄ (moiety2)	-0.063	-0.185	0.007
	N–NH ₂ (moiety3)	-0.088	-0.171	0.038
	Por' (moiety1)	-0.394	-0.507	-0.319
*N	TM-N ₄ (moiety2)	0.215	0.098	-0.030
	N (moiety3)	0.179	0.409	0.349
	Por' (moiety1)	0.257	0.409	0.227
*NH	TM-N ₄ (moiety2)	-0.182	-0.269	0.029
	NH (moiety3)	-0.075	-0.140	-0.256
	Por' (moiety1)	0.254	-0.027	0.240
*NH ₂	TM-N ₄ (moiety2)	-0.052	0.245	0.091
	NH ₂ (moiety3)	-0.201	-0.217	-0.332
	Por' (moiety1)	0.235	0.269	0.338
*NH ₃	TM-N ₄ (moiety2)	0.248	0.113	0.096
	NH ₃ (moiety3)	-0.483	-0.382	-0.484
	Por' (moiety1)	0.192	0.248	0.115
*NH=NH	TM-N ₄ (moiety2)	0.075	-0.102	0.146
	NH=NH (moiety3)	-0.266	-0.146	-0.261
	Por' (moiety1)	0.177	0.019	0.030
*NH–NH ₂	TM-N ₄ (moiety2)	-0.045	0.088	-0.111
	NH-NH ₂ (moiety3)	-0.132	-0.107	0.080
	Por' (moiety1)	0.185	0.250	0.375
*NH2-NH2	TM-N ₄ (moiety2)	0.138	0.032	0.137
	NH ₂ -NH ₂ (moiety3)	-0.323	-0.282	-0.152

Fig. S2. AIMD simulation plots carried out at 500 K for 10 ps in 2 fs steps. (a), (b), and (c) are schematic representations of the temperature trends with time evolution for Mo-Por, Tc-Por, and Nb-Por, respectively, while (a'), (b'), and (c') represent corresponding energy trends. (a''), (b''), and (c'') in the right show the top and side views of the TM-Por (TM = Mo, Tc, Nb) structures before and after the AIMD simulation.